New Construction of Minimal (v, 3, 2)-Coverings
Yugoslav journal of operations research, Tome 26 (2016) no. 4, p. 457 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A (v, 3, 2)-covering is a family of 3-subsets of a v-set, called blocks, such that any two elements of v-set appear in at least one of the blocks. In this paper, we propose new construction of (v, 3, 2)-coverings with the minimum number of blocks. This construction represents a generalization of Bose’s and Skolem’s constructions of Steiner systems S(2, 3, 6n + 3) and S(2, 3, 6n + 1). Unlike the existing constructions, our construction is direct and it uses the set of base blocks and permutation p, so by applying it to the remaining blocks of (v, 3, 2)-coverings are obtained.
Classification : 05B05, 05B07, 05B40
Keywords: Covering design, Covering number, Steiner system
@article{YJOR_2016_26_4_a3,
     author = {Neboj\v{s}a Nikoli\'c},
     title = {New {Construction} of {Minimal} (v, 3, {2)-Coverings}},
     journal = {Yugoslav journal of operations research},
     pages = {457 },
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2016_26_4_a3/}
}
TY  - JOUR
AU  - Nebojša Nikolić
TI  - New Construction of Minimal (v, 3, 2)-Coverings
JO  - Yugoslav journal of operations research
PY  - 2016
SP  - 457 
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2016_26_4_a3/
LA  - en
ID  - YJOR_2016_26_4_a3
ER  - 
%0 Journal Article
%A Nebojša Nikolić
%T New Construction of Minimal (v, 3, 2)-Coverings
%J Yugoslav journal of operations research
%D 2016
%P 457 
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2016_26_4_a3/
%G en
%F YJOR_2016_26_4_a3
Nebojša Nikolić. New Construction of Minimal (v, 3, 2)-Coverings. Yugoslav journal of operations research, Tome 26 (2016) no. 4, p. 457 . http://geodesic.mathdoc.fr/item/YJOR_2016_26_4_a3/