Strict Benson Proper-$varepsilon$-Efficiency in Vector Optimization With Set-Valued
Yugoslav journal of operations research, Tome 25 (2015) no. 3, p. 387
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Abstract: In this paper the notion of Strict Benson proper-$\varepsilon$-efficient solution for
a vector optimization problem with set-valued maps is introduced. The scalar-
ization theorems and $\varepsilon$-Lagrangian multiplier theorems are established under the
assumption of ic-cone-convexlikeness of set-valued maps.
Classification :
90C26, 90C29, 90C30, 90C46.
Keywords: : Ic-cone-convexlikeness, Set-valued Maps, strict Benson proper-$\varepsilon$-efficiency, scalarization, $\varepsilon$-Lagrangian Multipliers.
Keywords: : Ic-cone-convexlikeness, Set-valued Maps, strict Benson proper-$\varepsilon$-efficiency, scalarization, $\varepsilon$-Lagrangian Multipliers.
@article{YJOR_2015_25_3_a4,
author = {Surjeet Kaur Suneja and Megha Sharma},
title = {Strict {Benson} {Proper-}$varepsilon${-Efficiency} in {Vector} {Optimization} {With} {Set-Valued}},
journal = {Yugoslav journal of operations research},
pages = {387 },
year = {2015},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2015_25_3_a4/}
}
TY - JOUR AU - Surjeet Kaur Suneja AU - Megha Sharma TI - Strict Benson Proper-$varepsilon$-Efficiency in Vector Optimization With Set-Valued JO - Yugoslav journal of operations research PY - 2015 SP - 387 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/YJOR_2015_25_3_a4/ LA - en ID - YJOR_2015_25_3_a4 ER -
Surjeet Kaur Suneja; Megha Sharma. Strict Benson Proper-$varepsilon$-Efficiency in Vector Optimization With Set-Valued. Yugoslav journal of operations research, Tome 25 (2015) no. 3, p. 387 . http://geodesic.mathdoc.fr/item/YJOR_2015_25_3_a4/