A Note on R-Equitable K-Colorings of Trees
Yugoslav journal of operations research, Tome 24 (2014) no. 2, p. 293

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A graph $G = (V,E)$ is $r$-equitably $k$-colorable if there exists a partition of $V$ into $k$ independent sets $V_1, V_2,...,V_k$ such that $| |Vi| - |V_j| | \leq r$ for all $i, j \in \{1, 2, ..., k \}$. In this note, we show that if two trees $T_1$ and $T_2$ of order at least two are $r$-equitably $k$-colorable for $r \geq 1$ and $k \geq 3$, then all trees obtained by adding an arbitrary edge between $T_1$ and $T_2$ are also $r$-equitably $k$-colorable.
Classification : 05C15, 05C69.
Keywords: Trees, equitable coloring, independent sets.
@article{YJOR_2014_24_2_a8,
     author = {Alain Hertz and Bernard Ries},
     title = {A {Note} on {R-Equitable} {K-Colorings} of {Trees}},
     journal = {Yugoslav journal of operations research},
     pages = {293 },
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/}
}
TY  - JOUR
AU  - Alain Hertz
AU  - Bernard Ries
TI  - A Note on R-Equitable K-Colorings of Trees
JO  - Yugoslav journal of operations research
PY  - 2014
SP  - 293 
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/
LA  - en
ID  - YJOR_2014_24_2_a8
ER  - 
%0 Journal Article
%A Alain Hertz
%A Bernard Ries
%T A Note on R-Equitable K-Colorings of Trees
%J Yugoslav journal of operations research
%D 2014
%P 293 
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/
%G en
%F YJOR_2014_24_2_a8
Alain Hertz; Bernard Ries. A Note on R-Equitable K-Colorings of Trees. Yugoslav journal of operations research, Tome 24 (2014) no. 2, p. 293 . http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/