A Note on R-Equitable K-Colorings of Trees
Yugoslav journal of operations research, Tome 24 (2014) no. 2, p. 293 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A graph $G = (V,E)$ is $r$-equitably $k$-colorable if there exists a partition of $V$ into $k$ independent sets $V_1, V_2,...,V_k$ such that $| |Vi| - |V_j| | \leq r$ for all $i, j \in \{1, 2, ..., k \}$. In this note, we show that if two trees $T_1$ and $T_2$ of order at least two are $r$-equitably $k$-colorable for $r \geq 1$ and $k \geq 3$, then all trees obtained by adding an arbitrary edge between $T_1$ and $T_2$ are also $r$-equitably $k$-colorable.
Classification : 05C15, 05C69.
Keywords: Trees, equitable coloring, independent sets.
@article{YJOR_2014_24_2_a8,
     author = {Alain Hertz and Bernard Ries},
     title = {A {Note} on {R-Equitable} {K-Colorings} of {Trees}},
     journal = {Yugoslav journal of operations research},
     pages = {293 },
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/}
}
TY  - JOUR
AU  - Alain Hertz
AU  - Bernard Ries
TI  - A Note on R-Equitable K-Colorings of Trees
JO  - Yugoslav journal of operations research
PY  - 2014
SP  - 293 
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/
LA  - en
ID  - YJOR_2014_24_2_a8
ER  - 
%0 Journal Article
%A Alain Hertz
%A Bernard Ries
%T A Note on R-Equitable K-Colorings of Trees
%J Yugoslav journal of operations research
%D 2014
%P 293 
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/
%G en
%F YJOR_2014_24_2_a8
Alain Hertz; Bernard Ries. A Note on R-Equitable K-Colorings of Trees. Yugoslav journal of operations research, Tome 24 (2014) no. 2, p. 293 . http://geodesic.mathdoc.fr/item/YJOR_2014_24_2_a8/