A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems
Yugoslav journal of operations research, Tome 23 (2013) no. 2, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For $A \in \R^{n \times n}$ and $q \in \R^n$, the linear complementarity problem $LCP(A, q)$ is to determine if there is $x \in \R^n$ such that $x \geq 0,$ $y = Ax+q \geq 0$ and $x^T y = 0$. Such an $x$ is called a solution of $LCP(A, q)$. $A$ is called an $R_0$-matrix if $LCP(A, 0)$ has zero as the only solution. In this article, the class of $R_0$-matrices is extended to include typically singular matrices, by requiring in addition that the solution $x$ above belongs to a subspace of $\R^n$. This idea is then extended to semidefinite linear complementarity problems, where a characterization is presented for the multiplicative transformation.
Classification : 90C33, 15A09
Keywords: $R_0$-matrix, semidefinite linear complementarity problems, Moore-Penrose inverse, group inverse.
@article{YJOR_2013_23_2_a1,
     author = {Koratti Chengalrayan Sivakumar},
     title = {A {Class} of {Singular} $R_0${-Matrices} and {Extensions} to {Semidefinite} {Linear} {Complementarity} {Problems}},
     journal = {Yugoslav journal of operations research},
     pages = {163 },
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/}
}
TY  - JOUR
AU  - Koratti Chengalrayan Sivakumar
TI  - A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems
JO  - Yugoslav journal of operations research
PY  - 2013
SP  - 163 
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/
LA  - en
ID  - YJOR_2013_23_2_a1
ER  - 
%0 Journal Article
%A Koratti Chengalrayan Sivakumar
%T A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems
%J Yugoslav journal of operations research
%D 2013
%P 163 
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/
%G en
%F YJOR_2013_23_2_a1
Koratti Chengalrayan Sivakumar. A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems. Yugoslav journal of operations research, Tome 23 (2013) no. 2, p. 163 . http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/