A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems
Yugoslav journal of operations research, Tome 23 (2013) no. 2, p. 163
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For $A \in \R^{n \times n}$ and $q \in \R^n$, the linear complementarity problem
$LCP(A, q)$ is to determine if there is $x \in \R^n$ such that $x \geq 0,$ $y = Ax+q \geq 0$ and
$x^T y = 0$. Such an $x$ is called a solution of $LCP(A, q)$. $A$ is called an $R_0$-matrix if
$LCP(A, 0)$ has zero as the only solution. In this article, the class of $R_0$-matrices
is extended to include typically singular matrices, by requiring in addition that
the solution $x$ above belongs to a subspace of $\R^n$. This idea is then extended
to semidefinite linear complementarity problems, where a characterization is presented for the multiplicative transformation.
Classification :
90C33, 15A09
Keywords: $R_0$-matrix, semidefinite linear complementarity problems, Moore-Penrose inverse, group inverse.
Keywords: $R_0$-matrix, semidefinite linear complementarity problems, Moore-Penrose inverse, group inverse.
@article{YJOR_2013_23_2_a1,
author = {Koratti Chengalrayan Sivakumar},
title = {A {Class} of {Singular} $R_0${-Matrices} and {Extensions} to {Semidefinite} {Linear} {Complementarity} {Problems}},
journal = {Yugoslav journal of operations research},
pages = {163 },
year = {2013},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/}
}
TY - JOUR AU - Koratti Chengalrayan Sivakumar TI - A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems JO - Yugoslav journal of operations research PY - 2013 SP - 163 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/ LA - en ID - YJOR_2013_23_2_a1 ER -
%0 Journal Article %A Koratti Chengalrayan Sivakumar %T A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems %J Yugoslav journal of operations research %D 2013 %P 163 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/ %G en %F YJOR_2013_23_2_a1
Koratti Chengalrayan Sivakumar. A Class of Singular $R_0$-Matrices and Extensions to Semidefinite Linear Complementarity Problems. Yugoslav journal of operations research, Tome 23 (2013) no. 2, p. 163 . http://geodesic.mathdoc.fr/item/YJOR_2013_23_2_a1/