A Note on the p−Center Problem
Yugoslav journal of operations research, Tome 21 (2011) no. 2, p. 199

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The $p$-center problem is to locate $p$ facilities in a network so as to minimize the longest distance between a demand point and its nearest facility. In this paper, we give a construction on a graph $G$ which produces an infinite ascending chain $G=G_0 \leq G_1 \leq G_2 \leq ...$ of graphs containing $G$ such that given any optimal solution $X$ for the $p$-center problem on $G$, $X$ is an optimal solution for the $p$-center problem on $G_i$ for any $i \geq 1$.
Classification : 90B80, 05CXX.
Keywords: Location theory, P-center problem.
@article{YJOR_2011_21_2_a3,
     author = {Nader Jafari Rad},
     title = {A {Note} on the {p\ensuremath{-}Center} {Problem}},
     journal = {Yugoslav journal of operations research},
     pages = {199 },
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/}
}
TY  - JOUR
AU  - Nader Jafari Rad
TI  - A Note on the p−Center Problem
JO  - Yugoslav journal of operations research
PY  - 2011
SP  - 199 
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/
LA  - en
ID  - YJOR_2011_21_2_a3
ER  - 
%0 Journal Article
%A Nader Jafari Rad
%T A Note on the p−Center Problem
%J Yugoslav journal of operations research
%D 2011
%P 199 
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/
%G en
%F YJOR_2011_21_2_a3
Nader Jafari Rad. A Note on the p−Center Problem. Yugoslav journal of operations research, Tome 21 (2011) no. 2, p. 199 . http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/