A Note on the p−Center Problem
Yugoslav journal of operations research, Tome 21 (2011) no. 2, p. 199 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The $p$-center problem is to locate $p$ facilities in a network so as to minimize the longest distance between a demand point and its nearest facility. In this paper, we give a construction on a graph $G$ which produces an infinite ascending chain $G=G_0 \leq G_1 \leq G_2 \leq ...$ of graphs containing $G$ such that given any optimal solution $X$ for the $p$-center problem on $G$, $X$ is an optimal solution for the $p$-center problem on $G_i$ for any $i \geq 1$.
Classification : 90B80, 05CXX.
Keywords: Location theory, P-center problem.
@article{YJOR_2011_21_2_a3,
     author = {Nader Jafari Rad},
     title = {A {Note} on the {p\ensuremath{-}Center} {Problem}},
     journal = {Yugoslav journal of operations research},
     pages = {199 },
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/}
}
TY  - JOUR
AU  - Nader Jafari Rad
TI  - A Note on the p−Center Problem
JO  - Yugoslav journal of operations research
PY  - 2011
SP  - 199 
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/
LA  - en
ID  - YJOR_2011_21_2_a3
ER  - 
%0 Journal Article
%A Nader Jafari Rad
%T A Note on the p−Center Problem
%J Yugoslav journal of operations research
%D 2011
%P 199 
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/
%G en
%F YJOR_2011_21_2_a3
Nader Jafari Rad. A Note on the p−Center Problem. Yugoslav journal of operations research, Tome 21 (2011) no. 2, p. 199 . http://geodesic.mathdoc.fr/item/YJOR_2011_21_2_a3/