Efficiency and Duality for Multiobjective Fractional Variational Problems With $(
ho, b)$-Quasiinvexity
Yugoslav journal of operations research, Tome 19 (2009) no. 1, p. 85
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The necessary conditions for (normal) efficient solutions to a class of multi-objective
fractional variational problems (MFP) with nonlinear equality and inequality
constraints are established using a parametric approach to relate efficient solutions of a
fractional problem and a non-fractional problem. Based on these normal efficiency
criteria a Mond-Weir type dual is formulated and appropriate duality theorems are proved
assuming $(\rho, b)$-quasi-invexity of the functions involved.
@article{YJOR_2009_19_1_a5,
author = {\c{S}tefan Mititelu and I. M. Stancu-Minasian},
title = {Efficiency and {Duality} for {Multiobjective} {Fractional} {Variational} {Problems} {With} $(
ho, b)${-Quasiinvexity}},
journal = {Yugoslav journal of operations research},
pages = {85 },
year = {2009},
volume = {19},
number = {1},
zbl = {1274.90483},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2009_19_1_a5/}
}
TY - JOUR AU - Ştefan Mititelu AU - I. M. Stancu-Minasian TI - Efficiency and Duality for Multiobjective Fractional Variational Problems With $( ho, b)$-Quasiinvexity JO - Yugoslav journal of operations research PY - 2009 SP - 85 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/YJOR_2009_19_1_a5/ LA - en ID - YJOR_2009_19_1_a5 ER -
%0 Journal Article %A Ştefan Mititelu %A I. M. Stancu-Minasian %T Efficiency and Duality for Multiobjective Fractional Variational Problems With $( ho, b)$-Quasiinvexity %J Yugoslav journal of operations research %D 2009 %P 85 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/YJOR_2009_19_1_a5/ %G en %F YJOR_2009_19_1_a5
Ştefan Mititelu; I. M. Stancu-Minasian. Efficiency and Duality for Multiobjective Fractional Variational Problems With $( ho, b)$-Quasiinvexity. Yugoslav journal of operations research, Tome 19 (2009) no. 1, p. 85 . http://geodesic.mathdoc.fr/item/YJOR_2009_19_1_a5/