An Algorithm for $LC^1$ Optimization
Yugoslav journal of operations research, Tome 15 (2005) no. 2, p. 301 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper an algorithm for $LC^1$ unconstrained optimization problems, which uses the second order Dini upper directional derivative is considered. The purpose of the paper is to establish general algorithm hypotheses under which convergence occurs to optimal points. A convergence proof is given, as well as an estimate of the rate of convergence.
Keywords: Directional derivative, second order Dini upper directional derivative, uniformly convex functions.
@article{YJOR_2005_15_2_a8,
     author = {Nada I. {\DJ}uranovi\'c-Mili\v{c}i\'c},
     title = {An {Algorithm} for $LC^1$ {Optimization}},
     journal = {Yugoslav journal of operations research},
     pages = {301 },
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2005_15_2_a8/}
}
TY  - JOUR
AU  - Nada I. Đuranović-Miličić
TI  - An Algorithm for $LC^1$ Optimization
JO  - Yugoslav journal of operations research
PY  - 2005
SP  - 301 
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2005_15_2_a8/
LA  - en
ID  - YJOR_2005_15_2_a8
ER  - 
%0 Journal Article
%A Nada I. Đuranović-Miličić
%T An Algorithm for $LC^1$ Optimization
%J Yugoslav journal of operations research
%D 2005
%P 301 
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2005_15_2_a8/
%G en
%F YJOR_2005_15_2_a8
Nada I. Đuranović-Miličić. An Algorithm for $LC^1$ Optimization. Yugoslav journal of operations research, Tome 15 (2005) no. 2, p. 301 . http://geodesic.mathdoc.fr/item/YJOR_2005_15_2_a8/