A Reconstruction of Digital Parabolas from Their Least Squares Fit Representation
Yugoslav journal of operations research, Tome 8 (1998) no. 2, p. 273
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It is known that the set of digital parabola segments and the set of their
least squares parabola fit are in one-to-one correspondence |8|. This enables constant
space representation of a digital parabola segment. One of them is a representation of
the form $(x_1, n, \alpha, \beta, \gamma)$ where $x_1$ and $n$ are the x-coordinate of the left endpoint and
the number of digital points of the segment, respectively, while $\alpha$, $\beta$ and $\gamma$ are the
coefficients of the least squares parabola fit $Y=\alpha X^2+\beta X+\gamma$ for the given parabola
segment. This paper gives an $O(n \log^2 n)$ algorithm for recovering a given digital
parabola segment from its proposed code.
@article{YJOR_1998_8_2_a7,
author = {Nata\v{s}a Sladoje and Jovi\v{s}a \v{Z}uni\'c},
title = {A {Reconstruction} of {Digital} {Parabolas} from {Their} {Least} {Squares} {Fit} {Representation}},
journal = {Yugoslav journal of operations research},
pages = {273 },
year = {1998},
volume = {8},
number = {2},
zbl = {1009.68137},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_1998_8_2_a7/}
}
TY - JOUR AU - Nataša Sladoje AU - Joviša Žunić TI - A Reconstruction of Digital Parabolas from Their Least Squares Fit Representation JO - Yugoslav journal of operations research PY - 1998 SP - 273 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_1998_8_2_a7/ LA - en ID - YJOR_1998_8_2_a7 ER -
Nataša Sladoje; Joviša Žunić. A Reconstruction of Digital Parabolas from Their Least Squares Fit Representation. Yugoslav journal of operations research, Tome 8 (1998) no. 2, p. 273 . http://geodesic.mathdoc.fr/item/YJOR_1998_8_2_a7/