Capacity and Maximal Value of the Network Flow with Multiplicative Constraints
Yugoslav journal of operations research, Tome 7 (1997) no. 2, p. 231 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A class of network flows, called multiplicative or M-flows is investigated in this paper. M-flows arc subject to multiplicative capacity constraints . These constraints are sums of products with positive coefficients of flow function values on the arcs of subsets of the network arcs. A definition is give n to the flow capacity of a cutting set. Maximality conditions for multiplicative flow optimality are obtained . A theorem, analogous to the mincut-maxflow theorem for the classical network flow is proved.
Classification : 90B10
Keywords: Network flow, generalized flow, side constraints
@article{YJOR_1997_7_2_a3,
     author = {Vassil Sgurev and Mariana Nikolova},
     title = {Capacity and {Maximal} {Value} of the {Network} {Flow} with {Multiplicative} {Constraints}},
     journal = {Yugoslav journal of operations research},
     pages = {231 },
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1997},
     zbl = {0949.90007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_1997_7_2_a3/}
}
TY  - JOUR
AU  - Vassil Sgurev
AU  - Mariana Nikolova
TI  - Capacity and Maximal Value of the Network Flow with Multiplicative Constraints
JO  - Yugoslav journal of operations research
PY  - 1997
SP  - 231 
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_1997_7_2_a3/
LA  - en
ID  - YJOR_1997_7_2_a3
ER  - 
%0 Journal Article
%A Vassil Sgurev
%A Mariana Nikolova
%T Capacity and Maximal Value of the Network Flow with Multiplicative Constraints
%J Yugoslav journal of operations research
%D 1997
%P 231 
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_1997_7_2_a3/
%G en
%F YJOR_1997_7_2_a3
Vassil Sgurev; Mariana Nikolova. Capacity and Maximal Value of the Network Flow with Multiplicative Constraints. Yugoslav journal of operations research, Tome 7 (1997) no. 2, p. 231 . http://geodesic.mathdoc.fr/item/YJOR_1997_7_2_a3/