A Note on Fuzzy Groups
Yugoslav journal of operations research, Tome 7 (1997) no. 1, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Motivated by various applications of finite algebraic structures, we give general solutions to the following problems, implicitly stated in (1) and (2) for which groups is every fuzzy subgroupoid a fuzzy subgroup? and: for which groups are all fuzzy subgroups of finite order ? The solutions are given for lattice valued fuzzy subgroups, and particularly for interval valued ones ($[0,1]$ fuzzy subgroups).
Classification : 20N25 20E07
Keywords: Fuzzy subgroup, fuzzy subgroupoid
@article{YJOR_1997_7_1_a3,
     author = {Branimir \v{S}e\v{s}elja and Andreja Tepav\v{c}evi\'c},
     title = {A {Note} on {Fuzzy} {Groups}},
     journal = {Yugoslav journal of operations research},
     pages = {49 },
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1997},
     zbl = {0886.20041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_1997_7_1_a3/}
}
TY  - JOUR
AU  - Branimir Šešelja
AU  - Andreja Tepavčević
TI  - A Note on Fuzzy Groups
JO  - Yugoslav journal of operations research
PY  - 1997
SP  - 49 
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_1997_7_1_a3/
LA  - en
ID  - YJOR_1997_7_1_a3
ER  - 
%0 Journal Article
%A Branimir Šešelja
%A Andreja Tepavčević
%T A Note on Fuzzy Groups
%J Yugoslav journal of operations research
%D 1997
%P 49 
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_1997_7_1_a3/
%G en
%F YJOR_1997_7_1_a3
Branimir Šešelja; Andreja Tepavčević. A Note on Fuzzy Groups. Yugoslav journal of operations research, Tome 7 (1997) no. 1, p. 49 . http://geodesic.mathdoc.fr/item/YJOR_1997_7_1_a3/