A Regularized Continuous Projection-Gradient Method of the Fourth Order
Yugoslav journal of operations research, Tome 5 (1995) no. 2, p. 195
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For the minimization problem with inaccurately specified objective function and feasible set, a regularization method is proposed that combines the continuous projection-gradient method and the penalty-function method. Sufficient conditions for convergence are given and the regularizing operator is constructed.
Keywords:
Continuous projection-gradient method, Regularization, Tichonov function
@article{YJOR_1995_5_2_a2,
author = {Fedor Pavlovic Vasiljev and An{\dj}elija Nedi\'c},
title = {A {Regularized} {Continuous} {Projection-Gradient} {Method} of the {Fourth} {Order}},
journal = {Yugoslav journal of operations research},
pages = {195 },
year = {1995},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a2/}
}
TY - JOUR AU - Fedor Pavlovic Vasiljev AU - Anđelija Nedić TI - A Regularized Continuous Projection-Gradient Method of the Fourth Order JO - Yugoslav journal of operations research PY - 1995 SP - 195 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a2/ LA - en ID - YJOR_1995_5_2_a2 ER -
Fedor Pavlovic Vasiljev; Anđelija Nedić. A Regularized Continuous Projection-Gradient Method of the Fourth Order. Yugoslav journal of operations research, Tome 5 (1995) no. 2, p. 195 . http://geodesic.mathdoc.fr/item/YJOR_1995_5_2_a2/