Optimal Distribution Centers Involving Supply Capacity, Demands and Budget Restriction
Yugoslav journal of operations research, Tome 4 (1994) no. 2, p. 187
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G = (V, E)$ be a connected graph expressing a distribution network. The
elements of $D \subseteq V$ represent demand centers, while $S \subseteq V$ contains the candidate
supply centers. To each node $v_i \in D$, we associate a demand $d_i$, and to each clement $v_j$
of S the couple $(e_j, c_j)$, where $e_j$ and $c_j$ are the set up cost and the capacity of $v_j$
respectively. Furthermore, the distance for every arc $(v_i, v_j) \in E$ and the transportation
cost of the product unit are given. In this paper an algorithm is developed which
determines a subset of S in order to satisfy the demands with a minimum distribution
cost, so that the total set up cost of supply centers does not exceed a given budget.
Keywords:
Transportation, warehouse location, combinatorial optimization
@article{YJOR_1994_4_2_a5,
author = {C. C. Tsouros and M. Satratzemi},
title = {Optimal {Distribution} {Centers} {Involving} {Supply} {Capacity,} {Demands} and {Budget} {Restriction}},
journal = {Yugoslav journal of operations research},
pages = {187 },
year = {1994},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_1994_4_2_a5/}
}
TY - JOUR AU - C. C. Tsouros AU - M. Satratzemi TI - Optimal Distribution Centers Involving Supply Capacity, Demands and Budget Restriction JO - Yugoslav journal of operations research PY - 1994 SP - 187 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_1994_4_2_a5/ LA - en ID - YJOR_1994_4_2_a5 ER -
C. C. Tsouros; M. Satratzemi. Optimal Distribution Centers Involving Supply Capacity, Demands and Budget Restriction. Yugoslav journal of operations research, Tome 4 (1994) no. 2, p. 187 . http://geodesic.mathdoc.fr/item/YJOR_1994_4_2_a5/