An Algorithm for a Simple Construction of Suboptimal Digital Convex Polygons
Yugoslav journal of operations research, Tome 2 (1992) no. 1, p. 73
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The relationship between the number of edges and the diameter of digital
convex polygons was studied in the papers [6], [2], [3], [4], This paper give a linear
algorithm (w.r.t. the number vertices) for a simple approximate construction of
optimal digital convex polygons, that is, those digital convex polygons, which have
the smallest possible diameter for a given number of edges. The algorithm partly
uses the efficient construction [2] of a special sequence of optimal digital convex
polygons. It constructs in a simplified manner the suboptimal (with error tolerance
equal to 1) digital convex polygons. The proofs of this suboptimality can be found
in the paper [4].
Keywords:
@article{YJOR_1992_2_1_a6,
author = {Dragan M. Acketa and Sne\v{z}ana Mati\'c-Keki\'c},
title = {An {Algorithm} for a {Simple} {Construction} of {Suboptimal} {Digital} {Convex} {Polygons}},
journal = {Yugoslav journal of operations research},
pages = {73 },
year = {1992},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_1992_2_1_a6/}
}
TY - JOUR AU - Dragan M. Acketa AU - Snežana Matić-Kekić TI - An Algorithm for a Simple Construction of Suboptimal Digital Convex Polygons JO - Yugoslav journal of operations research PY - 1992 SP - 73 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/YJOR_1992_2_1_a6/ LA - en ID - YJOR_1992_2_1_a6 ER -
Dragan M. Acketa; Snežana Matić-Kekić. An Algorithm for a Simple Construction of Suboptimal Digital Convex Polygons. Yugoslav journal of operations research, Tome 2 (1992) no. 1, p. 73 . http://geodesic.mathdoc.fr/item/YJOR_1992_2_1_a6/