Designing the optimal trajectory for monitoring objects
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 3, pp. 32-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the task of developing a system for modeling the trajectories of a robot monitoring in a closed area from the ground: inspection of premises, survey of industrial facilities, assessment of the condition of fruit trees, etc. During monitoring, some obstacles may arise in the robot's path: temporary and removable (people, small furniture, household appliances, emergency zone) or permanent (walls, permanently installed equipment, fixed furniture). The robot is controlled using a program developed by the authors, which stores a database of routes successfully overcome by the robot earlier, for the most accurate determination of the trajectory of the robot, taking into account obstacles encountered along the constructed path. The article considers an algorithm for constructing a graph model of the monitoring area for the subsequent search for the shortest route of the robot, which consists in discretization the area, identifying possible ways to move the robot, analyzing existing obstacles and setting distances between the objects of study. It is shown that after obtaining such a graph, it is possible to apply one of the algorithms for finding the Hamiltonian path in a graph. It connects the vertices of the graph corresponding to the monitoring points. The result of applying the algorithm is the shortest route of the robot, or a message about the impossibility of monitoring (partial or complete insolubility of the problem) if a number of obstacles do not allow you to plot a route passing through some (or all) vertices.
Keywords:
routing, plane graph, algorithm, optimization, constraints, drone and truck problem, precision farming, monitoring.
@article{VYURV_2024_13_3_a1,
author = {M. Sallam and T. A. Makarovskikh},
title = {Designing the optimal trajectory for monitoring objects},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {32--46},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2024_13_3_a1/}
}
TY - JOUR AU - M. Sallam AU - T. A. Makarovskikh TI - Designing the optimal trajectory for monitoring objects JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2024 SP - 32 EP - 46 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURV_2024_13_3_a1/ LA - ru ID - VYURV_2024_13_3_a1 ER -
%0 Journal Article %A M. Sallam %A T. A. Makarovskikh %T Designing the optimal trajectory for monitoring objects %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2024 %P 32-46 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURV_2024_13_3_a1/ %G ru %F VYURV_2024_13_3_a1
M. Sallam; T. A. Makarovskikh. Designing the optimal trajectory for monitoring objects. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 3, pp. 32-46. http://geodesic.mathdoc.fr/item/VYURV_2024_13_3_a1/