Imputation of multivariate time series based on the behavioral patterns and autoencoders
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 2, pp. 39-55
Voir la notice de l'article provenant de la source Math-Net.Ru
Currently, in a wide range of subject domains, the problem of imputation missing points or blocks of time series is topical. In the article, we present SAETI (Snippet-based Autoencoder for Time-series Imputation), a novel method for imputation of missing values in multidimensional time series that is based on the combined use of autoencoders and a time series of behavioral patterns (snippets). The imputation of a multidimensional subsequence is performed using the following two neural network models: The Recognizer, which receives a subsequence as input, where the gaps are pre-replaced with zeros, and determines the corresponding snippet for each dimension; and the Reconstructor, which takes as input a subsequence and a set of snippets received from the Recognizer, and replaces the missing elements with plausible synthetic values. The Reconstructor is implemented as a combination of the following two models: An Encoder that forms a hidden state for a set of input sequences and recognized snippets; and a Decoder that receives a hidden state as input, which imputes the original subsequence. In the article, we present a detailed description of the above models. The results of experiments over time series from real-world subject domains showed that SAETI is on average ahead of state-of-the-art analogs in terms of accuracy and shows better results when input time series reflect the activity of a certain subject.
Keywords:
time series, imputation of missing values, behavioral patterns (snippets) of time series, neural networks.
Mots-clés : autoencoders
Mots-clés : autoencoders
@article{VYURV_2024_13_2_a2,
author = {A. A. Yurtin},
title = {Imputation of multivariate time series based on the behavioral patterns and autoencoders},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {39--55},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a2/}
}
TY - JOUR AU - A. A. Yurtin TI - Imputation of multivariate time series based on the behavioral patterns and autoencoders JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2024 SP - 39 EP - 55 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a2/ LA - ru ID - VYURV_2024_13_2_a2 ER -
%0 Journal Article %A A. A. Yurtin %T Imputation of multivariate time series based on the behavioral patterns and autoencoders %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2024 %P 39-55 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a2/ %G ru %F VYURV_2024_13_2_a2
A. A. Yurtin. Imputation of multivariate time series based on the behavioral patterns and autoencoders. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 2, pp. 39-55. http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a2/