Multimodal dynamic graph CNN for 3D semantic segmentation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 2, pp. 23-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a semantic segmentation method of point clouds in the form of terrain using a new multimodal convolutional neural network architecture based on a regular dynamic weighted graph, which allows to obtain an accurate solution to the segmentation problem based on a fusion of geometric and color features. The method can be effectively used for sparse, noisy, inhomogeneous and non-convex point clouds. The computer modeling of state-of-the-art methods for 3D semantic segmentation was carried out using the reference data collection ModelNet 40 and a data set of archaeological sites of the Bronze Age of the Southern Trans-Urals, namely data obtained as a result of a total station survey (the Trimble 3300 total station) of a complex of archaeological sites in the valley of the Sintashta river. A comparative analysis of the proposed method and state-of-the-art methods for 3D semantic segmentation with different combinations of input features of point clouds was carried out, and the method influence of forming a point cloud on the accuracy of 3D semantic segmentation was also investigated: in the first case, a point cloud from a reference dataset was studied, in the second case, variants using 3D registration based on NICP and FICP algorithms were applied.
Keywords: segmentation of 3D objects, graph convolutional neural networks, point clouds registration.
@article{VYURV_2024_13_2_a1,
     author = {A. V. Vokhmintcev and V. R. Abbazov and M. A. Romanov},
     title = {Multimodal dynamic graph {CNN} for {3D} semantic segmentation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {23--38},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a1/}
}
TY  - JOUR
AU  - A. V. Vokhmintcev
AU  - V. R. Abbazov
AU  - M. A. Romanov
TI  - Multimodal dynamic graph CNN for 3D semantic segmentation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2024
SP  - 23
EP  - 38
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a1/
LA  - ru
ID  - VYURV_2024_13_2_a1
ER  - 
%0 Journal Article
%A A. V. Vokhmintcev
%A V. R. Abbazov
%A M. A. Romanov
%T Multimodal dynamic graph CNN for 3D semantic segmentation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2024
%P 23-38
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a1/
%G ru
%F VYURV_2024_13_2_a1
A. V. Vokhmintcev; V. R. Abbazov; M. A. Romanov. Multimodal dynamic graph CNN for 3D semantic segmentation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 13 (2024) no. 2, pp. 23-38. http://geodesic.mathdoc.fr/item/VYURV_2024_13_2_a1/