A numerical method for solving singular integral algebraic equations with weakly singular kernels
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 10 (2021) no. 3, pp. 5-15
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Statements of many applied problems often include differential equations and Volterra integral equations of the first and second kind. By joining such equations together, we obtain a system of integral differential equations with a singular matrix multiplying the leading part. Such systems are commonly referred to as singular integral differential equations. If they do not contain an integral part, then they are called differential-algebraic equations. If there is no term with a derivative, then they are usually called integral algebraic equations. Such mathematical problem statements arise in simulation of processes occurring in electrical and hydraulic circuits, various dynamic systems, in particular, multibody systems. Therefore, qualitative study and numerical solution of such problems are quite relevant, and the results of research remain in demand in practice. In this paper, on the basis of the theory of matrix pencils, as well as using research schemes developed for differential algebraic and integral algebraic equations, the conditions for the existence and uniqueness of the solution of singular integral-differential equations with a weakly singular kernels are analyzed and a numerical method for their solution is proposed. The method was coded in MATLAB and tested on model examples.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
differential equations, integral differential equations, weak singularity.
Mots-clés : Abel equation
                    
                  
                
                
                Mots-clés : Abel equation
@article{VYURV_2021_10_3_a0,
     author = {E. V. Chistyakova and L. S. Solovarova and Doan Thai Son},
     title = {A numerical method for solving singular integral algebraic equations with weakly singular kernels},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2021_10_3_a0/}
}
                      
                      
                    TY - JOUR AU - E. V. Chistyakova AU - L. S. Solovarova AU - Doan Thai Son TI - A numerical method for solving singular integral algebraic equations with weakly singular kernels JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2021 SP - 5 EP - 15 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURV_2021_10_3_a0/ LA - ru ID - VYURV_2021_10_3_a0 ER -
%0 Journal Article %A E. V. Chistyakova %A L. S. Solovarova %A Doan Thai Son %T A numerical method for solving singular integral algebraic equations with weakly singular kernels %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2021 %P 5-15 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURV_2021_10_3_a0/ %G ru %F VYURV_2021_10_3_a0
E. V. Chistyakova; L. S. Solovarova; Doan Thai Son. A numerical method for solving singular integral algebraic equations with weakly singular kernels. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 10 (2021) no. 3, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURV_2021_10_3_a0/
