Development and implementation of the conference secret key generation protocol based on IKE
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 9 (2020) no. 1, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The protocol for generating a shared secret key often acts as the basis for informational interaction of participants in an untrusted environment. With the help of such a key, a secure channel or a secure communication network can be built in further interactions. Currently, the task of developing protocols for generating a shared key for a group of participants is relevant. One way to build such protocols is to generalize the protocol for two participants to the case of several participants. In the paper a protocol for generating a shared secret key for a group of participants (for a conference) is developed. The developed protocol is based on the Internet Key Exchange (IKE) protocol from the IPSec family of protocols for two participants, which ensures the implementation of security properties, such as authentication of the subject and message, generation of new keys, protection against reading back, protection against repetition, and a number of others. The strength of the developed key generation protocol is based on the complexity of the discrete logarithm problem in a cyclic group. The work studies the security properties provided by the constructed protocol, in particular, it studies the resistance to coalition attacks that are relevant for group protocols. Some features of the practical application of the constructed protocol are also noted.
Keywords: private key generation, IKE, conference.
@article{VYURV_2020_9_1_a0,
     author = {A. A. Volokhov and Yu. V. Kosolapov},
     title = {Development and implementation of the conference secret key generation protocol based on {IKE}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--19},
     year = {2020},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2020_9_1_a0/}
}
TY  - JOUR
AU  - A. A. Volokhov
AU  - Yu. V. Kosolapov
TI  - Development and implementation of the conference secret key generation protocol based on IKE
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2020
SP  - 5
EP  - 19
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2020_9_1_a0/
LA  - ru
ID  - VYURV_2020_9_1_a0
ER  - 
%0 Journal Article
%A A. A. Volokhov
%A Yu. V. Kosolapov
%T Development and implementation of the conference secret key generation protocol based on IKE
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2020
%P 5-19
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2020_9_1_a0/
%G ru
%F VYURV_2020_9_1_a0
A. A. Volokhov; Yu. V. Kosolapov. Development and implementation of the conference secret key generation protocol based on IKE. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 9 (2020) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURV_2020_9_1_a0/

[1] M. Bilal, S. G. Kang, “A Secure Key Agreement Protocol for Dynamic Group”, Journal Cluster Computing, 20:3 (2017), 2779–2792 | DOI | MR

[2] A. V. Cheremushkin, “Cryptographic Protocols: Basic Properties and Vulnerabilities”, Applied discrete mathematics. Appendix, 2009, no. 2, 115–150

[3] D. Dolev, A. C. Yao, “On the security of public key protocol”, IEEE Transactions on Information Theory, 29:2 (1983), 198–208 | DOI | MR | Zbl

[4] H. Liu, J. Yang, Y. Wang, Y. Chen, “J., Koksal C.E. Group Secret Key Generation via Received Signal Strength: Protocols, Achievable Rates, and Implementation”, IEEE Transactions on Mobile Computing, 2014, no. 12, 2820–2835 | DOI

[5] P. Xu, K. Cumanan, Z. Ding, X. Dai, K. K. Leung, “Group Secret Key Generation in Wireless Networks: Algorithms and Rate Optimization”, IEEE Transactions on Information Forensics and Security, 11:8 (2016), 1831–1846 | DOI

[6] A. D. Wyner, “The wire-tap channel”, The Bell System Technical Journal, 54:8 (1975), 1355–1387 | DOI | MR | Zbl

[7] E. Bresson, O. Chevassut, D. Pointcheval, “Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks”, 8th International Conference on the Theory and Application of Cryptology and Information Security (Queenstown, New Zealand, December, 1–5, 2002), Lecture Notes in Computer Science, 2002, 497–514 | DOI | MR | Zbl

[8] E. Bresson, M. Manulis, “Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks”, International Journal of Applied Cryptography, 1:2 (2008), 91–107 | DOI | MR | Zbl

[9] B. V. Baiju, “Secret Key Sharing Scheme Based On Key Generation Centre For Authenticated Exchange Of Messages”, International Journal of Engineering Science Invention, 2:11 (2013), 15–21

[10] Y. Kim, A. Perrig, G. Tsudik, “Tree-based Group Key Agreement”, ACM Transactions on Information and System Security, 7:1 (2004), 60–96 | DOI

[11] T. H. Lin, C. K. Tsung, T. F. Lee, Z. B. Wang, “A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting”, Sensors, 17:12 (2017), 1–14 | DOI

[12] V. M. Deundyak, A. A. Taran, “Key Distribution System Based on Hadamard Designs”, Modeling and Analysis of Information Systems, 26:2 (2019), 229–243 | DOI | MR

[13] W. Diffie, M. E. Hellman, “New Directions in Cryptography”, IEEE Transactions on Information Theory, 22:6 (1976), 644–654 | DOI | MR | Zbl

[14] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”, IEEE Transactions on Information Theory, 31:4 (1985), 469–472 | DOI | MR | Zbl

[15] D. Boneh, “The Decision Diffie–Hellman Problem”, Third International Symposiun, ANTSIII (Portland, Oregon, USA, June, 21–25, 1998), Lecture Notes in Computer Science, 1998, 48–63 | DOI | MR | Zbl

[16] M. Steiner, G. Tsudik, M. Waidner, “Diffie-Hellman Key Distribution Extended to Group Communication”, 3rd ACM conference on Computer and communications security (New Delhi, India, March, 14–15, 1996), ACM, New York, 1996, 31-–37 | DOI

[17] N. Sendrier, “Code-Based Cryptography: State of the Art and Perspectives”, IEEE Security Privacy, 15:4 (2017), 44–50 | DOI

[18] V. M. Deundyak, Y. u. Kosolapov, “On the Berger–Loidreau Cryptosystem on the Tensor Product of Codes”, Journal of Computational and Engineering Mathematics, 5:2 (2018), 16–33 | DOI | MR | Zbl