Mots-clés : polynomial-time algorithm
@article{VYURV_2019_8_4_a2,
author = {T. A. Makarovskikh},
title = {Constructing self-non-intersecting $OE$-chains in a plane eulerian graph},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {30--42},
year = {2019},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/}
}
TY - JOUR AU - T. A. Makarovskikh TI - Constructing self-non-intersecting $OE$-chains in a plane eulerian graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 30 EP - 42 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/ LA - ru ID - VYURV_2019_8_4_a2 ER -
%0 Journal Article %A T. A. Makarovskikh %T Constructing self-non-intersecting $OE$-chains in a plane eulerian graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 30-42 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/ %G ru %F VYURV_2019_8_4_a2
T. A. Makarovskikh. Constructing self-non-intersecting $OE$-chains in a plane eulerian graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/
[1] E. F. Silva, L. T. Oliveira, J. F. Oliveira, F. M. B. Toledo, “Exact approaches for the cutting path determination problem”, Computers Operations Research, 112 (2019), 104772 | DOI
[2] T. A. Makarovskikh, A. V. Panyukov, E. A. Savitsky, “Mathematical Models and Routing Algorithms for CAD Technological Preparation of Cutting Processes”, Automation and Remote Control, 78 (2017), 868–882 | DOI
[3] R. Dewil, P. Vansteenwegen, D. Cattrysse, “A Review of Cutting Path Algorithms for Laser Cutters”, International Journal Adv Manuf. Technol, 87 (2016), 1865–1884 | DOI
[4] R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, T. Vossen, “An Improvement Heuristic Framework for the Laser Cutting Tool Path Problem”, International Journal of Production Research, 53 (2015), 1761–1776 | DOI
[5] J. Hoeft, U. Palekar, “Heuristics for the Plate-cutting Travelling Salesman Problem”, IIE Transactions, 29 (1997), 719–731 | DOI
[6] R. Dewil, P. Vansteenwegen, D. Cattrysse, “Construction Heuristics for Generating Tool Paths for Laser Cutters”, International Journal of Production Research, 52 (2014), 5965–5984 | DOI
[7] A. A. Petunin, A. G. Chentsov, P. A. Chentsov, “On the Issue of Routing Movements in Sheet Cutting of Parts”, Bulletin of the South Ural State University Series: Mathematical Modelling and Programming, 10:3 (2017), 25–39 | DOI | DOI
[8] A. G. Chentsov, A. M. Grigoryev, A. A. Chentsov, “Solving a Routing Problem with the Aid of an Independent Computations Scheme”, Bulletin of the South Ural State University Series: Mathematical Modelling and Programming, 11:1 (2018), 60–74 | DOI
[9] A. Petunin, C. Stylios, Optimization Models of Tool Path Problem for CNC Sheet Metal Cutting Machines, 49 (2016), 28–30 | DOI
[10] A. Chentsov, M. Khachay, D. Khachay, “Linear Time Algorithm for Precedence Constrained Asymmetric Generalized Traveling Salesman Problem”, 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016 (Troyes, France, June, 28–30, 2016), v. 49, IFAC-PapersOnLine, 2016, 651–655 | DOI
[11] M. Khachay, K. Neznakhina, “Towards Tractability of the Euclidean Generalized Travelling Salesman Problem in Grid Clusters Defined by a Grid of Bounded Height”, Communications in Computer and Information Science, 871 (2018), 68–77 | DOI
[12] U. Manber, S. Israni, “Pierce Point Minimization and Optimal Torch Path Determination in Flame Cutting”, J. Manuf. Syst. Vol, 3 (1984), 81–89 | DOI
[13] T. Panyukova, “Chain Sequences with Ordered Enclosing”, Journal of Computer and System Sciences International, 46 (2007), 83–92 | DOI
[14] Y. M. Borse, “Splitting Lemma for 2-Connected Graphs”, International Scholarly Research Network, ISRN Discrete Mathematics, 2012 (2012) | DOI
[15] T. A. Makarovskikh, “Software for Constructing of A-chains with Ordered Enclosing for a Plane Connected 4-regular Graph. Bulletin of the South Ural State University”, Series: Computational Mathematics and Software Engineering, 8:1 (2019), 36–53 | DOI
[16] A. F. Filippov, “The Elementary Proof of Jordan Theorem”, Advances in Mathematical Sciences, 5 (1950), 173–176
[17] U. Manber, S. W. Bent, “On Non-intersecting Eulerian Circuits”, Discrete Applied Mathematics, 18 (1987), 87–94 | DOI
[18] H. Fleischner, “Eulerian Graphs and Related Topics”, Part 1, vol, 1:45 (1)
[19] T. A. Panyukova, “Constructing of OE-postman Path for a Planar Graph”, Bulletin of the South Ural State University Series: Mathematical Modelling, Programming and Computer Software, 7:4 (2014), 90–101 | DOI
[20] T. A. Makarovskikh, A. V. Panyukov, E. A. Savitsky, “Mathematical Models and Routing Algorithms for CAM of Technological Support of Cutting Processes”, ScienceDirect IFAC-PapersOnLine 49–12, 2016, 49–12 | DOI
[21] T. Makarovskikh, A. Panyukov, “The Cutter Trajectory Avoiding Intersections of Cuts”, IFAC-PapersOnLine, 50 (2017), 2284–2289 | DOI
[22] S. Szeider, “Finding Paths in Graphs Avoiding Forbidden Transitions”, Discrete Applied Mathematics, 2003, 261–273 | DOI