Constructing self-non-intersecting $OE$-chains in a plane eulerian graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 30-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a polynomial-time algorithm for constructing a self-non-intersecting ordered enclosing chain for a plane Eulerian graph. The proposed approach consists in splitting all the vertices of the original graph of degree higher than 4 and introducing fictive vertices and edges and, thus, reducing the considered earlier problem to the problem of finding an $A$-chain with ordered enclosing in a plane connected 4-regular graph. The presented reduction algorithm solves the problem in polynomial time. A test example of constructing a self-non-intersecting chain with ordered enclosing is considered. This problem arises during the technological preparation of the cutting process, when it is necessary to determine the path of the cutter when there are no self-intersections of the cutting path and the part cut off from the sheet does not require any cuts. The cutting plan may be presented as a planar graph which is the homeomorphic image of the cutting plan. The algorithm proposed in the article solves the problem of routing when cutting parts when such technological constraints are simultaneously imposed on the path of the cutter.
Keywords: plane graph, path, cutting plan, cutting process.
Mots-clés : polynomial-time algorithm
@article{VYURV_2019_8_4_a2,
     author = {T. A. Makarovskikh},
     title = {Constructing self-non-intersecting $OE$-chains in a plane eulerian graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {30--42},
     year = {2019},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/}
}
TY  - JOUR
AU  - T. A. Makarovskikh
TI  - Constructing self-non-intersecting $OE$-chains in a plane eulerian graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 30
EP  - 42
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/
LA  - ru
ID  - VYURV_2019_8_4_a2
ER  - 
%0 Journal Article
%A T. A. Makarovskikh
%T Constructing self-non-intersecting $OE$-chains in a plane eulerian graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 30-42
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/
%G ru
%F VYURV_2019_8_4_a2
T. A. Makarovskikh. Constructing self-non-intersecting $OE$-chains in a plane eulerian graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a2/

[1] E. F. Silva, L. T. Oliveira, J. F. Oliveira, F. M. B. Toledo, “Exact approaches for the cutting path determination problem”, Computers Operations Research, 112 (2019), 104772 | DOI

[2] T. A. Makarovskikh, A. V. Panyukov, E. A. Savitsky, “Mathematical Models and Routing Algorithms for CAD Technological Preparation of Cutting Processes”, Automation and Remote Control, 78 (2017), 868–882 | DOI

[3] R. Dewil, P. Vansteenwegen, D. Cattrysse, “A Review of Cutting Path Algorithms for Laser Cutters”, International Journal Adv Manuf. Technol, 87 (2016), 1865–1884 | DOI

[4] R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, T. Vossen, “An Improvement Heuristic Framework for the Laser Cutting Tool Path Problem”, International Journal of Production Research, 53 (2015), 1761–1776 | DOI

[5] J. Hoeft, U. Palekar, “Heuristics for the Plate-cutting Travelling Salesman Problem”, IIE Transactions, 29 (1997), 719–731 | DOI

[6] R. Dewil, P. Vansteenwegen, D. Cattrysse, “Construction Heuristics for Generating Tool Paths for Laser Cutters”, International Journal of Production Research, 52 (2014), 5965–5984 | DOI

[7] A. A. Petunin, A. G. Chentsov, P. A. Chentsov, “On the Issue of Routing Movements in Sheet Cutting of Parts”, Bulletin of the South Ural State University Series: Mathematical Modelling and Programming, 10:3 (2017), 25–39 | DOI | DOI

[8] A. G. Chentsov, A. M. Grigoryev, A. A. Chentsov, “Solving a Routing Problem with the Aid of an Independent Computations Scheme”, Bulletin of the South Ural State University Series: Mathematical Modelling and Programming, 11:1 (2018), 60–74 | DOI

[9] A. Petunin, C. Stylios, Optimization Models of Tool Path Problem for CNC Sheet Metal Cutting Machines, 49 (2016), 28–30 | DOI

[10] A. Chentsov, M. Khachay, D. Khachay, “Linear Time Algorithm for Precedence Constrained Asymmetric Generalized Traveling Salesman Problem”, 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016 (Troyes, France, June, 28–30, 2016), v. 49, IFAC-PapersOnLine, 2016, 651–655 | DOI

[11] M. Khachay, K. Neznakhina, “Towards Tractability of the Euclidean Generalized Travelling Salesman Problem in Grid Clusters Defined by a Grid of Bounded Height”, Communications in Computer and Information Science, 871 (2018), 68–77 | DOI

[12] U. Manber, S. Israni, “Pierce Point Minimization and Optimal Torch Path Determination in Flame Cutting”, J. Manuf. Syst. Vol, 3 (1984), 81–89 | DOI

[13] T. Panyukova, “Chain Sequences with Ordered Enclosing”, Journal of Computer and System Sciences International, 46 (2007), 83–92 | DOI

[14] Y. M. Borse, “Splitting Lemma for 2-Connected Graphs”, International Scholarly Research Network, ISRN Discrete Mathematics, 2012 (2012) | DOI

[15] T. A. Makarovskikh, “Software for Constructing of A-chains with Ordered Enclosing for a Plane Connected 4-regular Graph. Bulletin of the South Ural State University”, Series: Computational Mathematics and Software Engineering, 8:1 (2019), 36–53 | DOI

[16] A. F. Filippov, “The Elementary Proof of Jordan Theorem”, Advances in Mathematical Sciences, 5 (1950), 173–176

[17] U. Manber, S. W. Bent, “On Non-intersecting Eulerian Circuits”, Discrete Applied Mathematics, 18 (1987), 87–94 | DOI

[18] H. Fleischner, “Eulerian Graphs and Related Topics”, Part 1, vol, 1:45 (1)

[19] T. A. Panyukova, “Constructing of OE-postman Path for a Planar Graph”, Bulletin of the South Ural State University Series: Mathematical Modelling, Programming and Computer Software, 7:4 (2014), 90–101 | DOI

[20] T. A. Makarovskikh, A. V. Panyukov, E. A. Savitsky, “Mathematical Models and Routing Algorithms for CAM of Technological Support of Cutting Processes”, ScienceDirect IFAC-PapersOnLine 49–12, 2016, 49–12 | DOI

[21] T. Makarovskikh, A. Panyukov, “The Cutter Trajectory Avoiding Intersections of Cuts”, IFAC-PapersOnLine, 50 (2017), 2284–2289 | DOI

[22] S. Szeider, “Finding Paths in Graphs Avoiding Forbidden Transitions”, Discrete Applied Mathematics, 2003, 261–273 | DOI