Algorithm of dynamical input reconstruction for a stochastic differential equation: tuning of parameters and numerical experiments
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 15-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of reconstructing unknown inputs in a stochastic differential equation is investigated by means of the approach of the theory of dynamic inversion. The statement when the simultaneous reconstruction of disturbances in the deterministic and stochastic terms of the equation is performed from the discrete information on a number of realizations of the stochastic process is considered. The problem is reduced to an inverse problem for ordinary differential equations describing the mathematical expectation and covariance matrix of the process. A software-oriented solving algorithm based on constructions of the theory of positional control with a model is designed; an estimate for its convergence rate with respect to the number of measurable realizations is obtained. A program procedure for the automatic tuning of the algorithm’s parameters in order to have the best approximation results for different disturbances satisfying a priori constraints in a specific dynamical system is proposed. Desired dependencies of the algorithm’s parameters on the number of measured realizations are determined empirically via solving a specific extremal problem, where the deviation of the algorithm’s output from some test function is minimized. To optimize the time-taking adaptation process assuming the simulation of a large number of independent trajectories of the stochastic process, the parallelization of calculations is applied. A model example illustrating the method proposed is given. A system approximately describing the population dynamics of two interacting biological species is considered. Calculation results and parallelization efficiency characteristics are presented.
Keywords: stochastic differential equation, controlled model, parameter tuning, parallelization of calculations.
Mots-clés : dynamical reconstruction
@article{VYURV_2019_8_4_a1,
     author = {L. A. Melnikova and V. L. Rozenberg},
     title = {Algorithm of dynamical input reconstruction for a stochastic differential equation: tuning of parameters and numerical experiments},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {15--29},
     year = {2019},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a1/}
}
TY  - JOUR
AU  - L. A. Melnikova
AU  - V. L. Rozenberg
TI  - Algorithm of dynamical input reconstruction for a stochastic differential equation: tuning of parameters and numerical experiments
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 15
EP  - 29
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a1/
LA  - ru
ID  - VYURV_2019_8_4_a1
ER  - 
%0 Journal Article
%A L. A. Melnikova
%A V. L. Rozenberg
%T Algorithm of dynamical input reconstruction for a stochastic differential equation: tuning of parameters and numerical experiments
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 15-29
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a1/
%G ru
%F VYURV_2019_8_4_a1
L. A. Melnikova; V. L. Rozenberg. Algorithm of dynamical input reconstruction for a stochastic differential equation: tuning of parameters and numerical experiments. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 15-29. http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a1/

[1] A. V. Kryazhimskii, Y. u. Osipov, “Modelling of a Control in a Dynamic System. Engrg”, Cybernetics, 21:2 (1984), 38–47

[2] Y. u. Osipov, A. V. Kryazhimskii, V. I. Maksimov, “Dynamic Recovery Methods for Inputs of Control Systems”, Yekaterinburg, Publishing of the UB of RAS, 2011

[3] V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, Utrecht–Boston, VSP, 2002, 269 pp.

[4] N. N. Krasovskii, A. I. Subbotin, Game-Theoretical Control Problems, New York, Springer, 1988, 517 pp.

[5] A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems, New York, Wiley, 1981, 258 pp.

[6] M. S. Blizorukova, V. I. Maksimov, “On a Reconstruction Algorithm for the Trajectory and Control in a Delay System. Proc. Steklov Inst”, Math, 280:1 (2013) | DOI | DOI

[7] A. M. Kadiyev, V. I. Maksimov, “On the Reconstruction of Controls in a Parabolic Equation”, Differential Equations, 43:11 (2007), 1585–1593 | DOI

[8] А. В. Кряжимский, Ю. С. Осипов, “On a Stable Positional Recovery of Control from Measurements of a Part of Coordinates”, Some Problems of Control and Stability, 1989, 33–47, Publishing of the UB of Academy of Sciences of the USSR, Sverdlovsk

[9] V. L. Rozenberg, “Dynamic Restoration of the Unknown Function in the Linear Stochastic Differential Equation. Autom”, Remote Control, 68:11 (2007), 1959–1969 | DOI

[10] V. L. Rozenberg, “Reconstruction of Random-Disturbance Amplitude in Linear Stochastic Equations from Measurements of Some of the Coordinates. Comput. Math. Math”, Phys, 56:3 (2016), 367–375 | DOI | DOI

[11] V. L. Rozenberg, “Dynamical Input Reconstruction Problem for a Quasi-linear Stochastic System”, IFAC-PapersOnLine, 51 (2018), 727–732 | DOI

[12] B. Oksendal, Stochastic Differential Equations: an Introduction with Applications, Berlin, Springer, 1985, 408 pp.

[13] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Handbook on Probability Theory and Mathematical Statistics, Nauka, Moscow, 1985, 640 pp.

[14] F. L. Chernous’ko, V. B. Kolmanovskii, Optimal Control under Random Perturbation, Nauka, Moscow, 1978, 272 pp.

[15] G. N. Milshtein, Numerical Integration of Stochastic Differential Equations, Publishing of the Ural State University, Sverdlovsk, 1988, 224 pp.

[16] V. P. Gergel’, Theory and Practice of Parallel Computing, Binom, Moscow, 2007, 424 pp.