@article{VYURV_2019_8_4_a0,
author = {H. K. Al-Mahdawi},
title = {Studying the {Picard's} method for solving the inverse {Cauchy} problem for heat conductivity equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--14},
year = {2019},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a0/}
}
TY - JOUR AU - H. K. Al-Mahdawi TI - Studying the Picard's method for solving the inverse Cauchy problem for heat conductivity equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 5 EP - 14 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a0/ LA - ru ID - VYURV_2019_8_4_a0 ER -
%0 Journal Article %A H. K. Al-Mahdawi %T Studying the Picard's method for solving the inverse Cauchy problem for heat conductivity equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 5-14 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a0/ %G ru %F VYURV_2019_8_4_a0
H. K. Al-Mahdawi. Studying the Picard's method for solving the inverse Cauchy problem for heat conductivity equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURV_2019_8_4_a0/
[1] V. K. Ivanov, “About Application of Picard Method to the Solution of Integral Equations for the First Kind”, Bui. Inst. Politehn. Iasi, 4:34 (1968), 71–78
[2] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of Linear Ill-Posed Problem and Application, Nauok, Moscow, 1978, 206 pp.
[3] S. I. Kabanikhin, Inverse and IllPosed Problems, v. 55, Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, 2012, 458 pp.
[4] V. P. Tanana, A. I. Sidikova, Inverse and IllPosed Problems, v. 62, Optimal Methods for Solving Ill-Posed Heat Conduction Problems, De Gruyter, 2018, 138 pp.
[5] A. N. Tikhonov, “On the Regularization of Ill-Posed Problems”, Proceedings of the USSR Academy of Sciences, 153:1 (1963), 49–52
[6] M. M. Lavrent’ev, On Some Ill-Posed Problems of Mathematical Physics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 1962, 92 pp.
[7] H. Mu, J. Li, X. Wang, “Optimization Based Inversion Method for the Inverse Heat Conduction Problems”, IOP Conference Series: Earth and Environmental Science. 2017. Vol. 64, 2017, Vol. 64, no. 1. P. 1–9. DOI, 1–9 | DOI
[8] P. Duda, “Solution of Inverse Heat Conduction Problem Using the Tikhonov Regularization Method”, Journal of Thermal Science, 26 (2017), 60–65 | DOI
[9] A. Frackowiak, N. D. Botkin, M. Cialkowski, “Iterative Algorithm for Solving the Inverse Heat Conduction Problems with the Unknown Source Function”, Inverse Problems in Science and Engineering, 23 (2015), 1056–1071 | DOI
[10] S. Yang, X. Xiong, “A. Tikhonov Regularization Method for Solving an Inverse Heat Source Problem”, Bull. Malays. Math. Sci. Soc, 5 (2018), 1–12 | DOI