@article{VYURV_2019_8_3_a0,
author = {E. I. Rukavishnikova},
title = {Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--26},
year = {2019},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/}
}
TY - JOUR AU - E. I. Rukavishnikova TI - Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 5 EP - 26 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/ LA - ru ID - VYURV_2019_8_3_a0 ER -
%0 Journal Article %A E. I. Rukavishnikova %T Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 5-26 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/ %G ru %F VYURV_2019_8_3_a0
E. I. Rukavishnikova. Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 3, pp. 5-26. http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/
[1] V. A. Rukavishnikov, E. I. Rukavishnikova, “The Finite Element Method for the First Boundary Value Problem with Coordinated Degeneration of the Initial Data”, Russian Academy of Sciences. Doklady. Mathematics, 50:2 (1995), 335–339
[2] F. Assous, Jr. P. Ciarlet, J. Segr?e, “Numerical Solution of the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domain: The Singular Complement Method”, Journal of Computational Physics, 161 (2000), 218–249 | DOI
[3] M. Costabel, M. Dauge, C. Schwab, “Exponential Convergence of hp-FEM for Maxwell’s Equations with Weighted Regularization in Polygonal Domains”, Mathematical Models and Methods in Applied Sciences, 15:4 (2005), 575–622 | DOI
[4] D. Arroyo, A. Bespalov, N. Heuer, “On the Finite Element Method for Elliptic Problems with Degenerate and Singular Coefficients”, Mathematics of Computation, 76:258 (2007), 509–537 | DOI
[5] H. Li, V. Nistor, “Analysis of a Modified Schrodinger Operator in 2D: Regularity, Index, and FEM”, Journal of Computational and Applied Mathematics, 224:1 (2009), 320–338 | DOI
[6] V. A. Rukavishnikov, E. V. Kuznetsova, “A Scheme of a Finite Element Method for Boundary Value Problems with Non-Coordinated Degeneration of Input Data”, Numerical Analysis and Applications, 2:3 (2009), 250–259 | DOI
[7] V. A. Rukavishnikov, H. I. Rukavishnikova, “The Finite Element Method for a Boundary Value Problem with Strong Singularity”, Journal of Computational and Applied Mathematics, 234:9 (2010), 2870–2882 | DOI
[8] by V. A. Rukavishnikov, A. O. Mosolapov “New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity”, Journal of Computational Physics, 231:6 (2012), 2438–2448 | DOI
[9] V. A. Rukavishnikov, H. I. Rukavishnikova, “On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space”, Numerical Functional Analysis and Optimization, 34:12 (2013), 1328–1347 | DOI
[10] V. A. Rukavishnikov, E. I. Rukavishnikova, “The Finite Element Method for Boundary Value Problems with Strong Singularity and Double Singularity”, Lecture Notes in Computer Science, 8236 (2013), 110–121 | DOI
[11] S. M. Nikol’skij, “A Variational Problem for an Equation of Elliptic Type with Degeneration on the Boundary”, Proceedings of the Steklov Institute of Mathematics, 150 (1981), 227–254
[12] P. I. Lizorkin, S. M. Nikol’skij, “An Elliptic Equation with Degeneracy. A Variational Method”, Soviet Mathematics. Doklady, 23 (1981), 237–240
[13] P. I. Lizorkin, S. M. Nikolskii, “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva reshenii”, Doklady Akademii Nauk SSSR, 257:2 (1981), 278–282
[14] V. A. Rukavishnikov, E. I. Rukavishnikova, “Ob izomorfnom otobrazhenii vesovykh prostranstv ellipticheskim operatorom s vyrozhdeniem na granitse oblasti”, Differentsialnye uravneniya, 50:3 (2014), 349–355 | DOI
[15] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Moskva, 1977, 456 pp.
[16] P. Zh. Oben Zh.-P, Priblizhennoe reshenie ellipticheskikh kraevykh zadach, per. s angl, Mir, Moskva, 1977, 383 pp.
[17] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, Moskva, 1980, 512 pp.