Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 3, pp. 5-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the Dirichlet problem with homogeneous boundary condition for a second-order elliptic equation with degeneration on the entire twice continuously differentiable boundary of two-dimensional domain $\Omega$. We define a generalized solution of this problem which exists and is unique in the weighted Sobolev space $\mathring{W}^1_{2,\alpha}(\Omega)$. To solve the formulated problem a finite element method is developed, the scheme of which is constructed on the basis of the definition of a generalized solution of the original differential problem in the space $\mathring{W}^1_{2,\alpha}(\Omega)$. For this purpose a two-dimensional convex domain is divided into triangles with special condensation to the boundary. Next we introduce a finite element space $V^h\subset\mathring{W}^1_{2,\alpha}(\Omega)$ that contains continuous functions liner on each triangular element of grid region $\Omega^h$ and equal to zero on the set $\bar{\Omega}\setminus\Omega^h$, show unique solvability of the scheme of the finite element method. For the generalized solution $u$ from the subspace $\mathring{W}^2_{2,\alpha-1}(\Omega)$ of the space $\mathring{W}^1_{2,\alpha}(\Omega)$, using its values in the nodes of the triangulated domain, an interpolant $u_I\in V^h$ is constructed, the fact of its convergence with respect to the norm $W^1_{2,\alpha}(\Omega)$ is established. The main result of the work for the proposed method for solving the first boundary value problem with degeneration is the proof of the convergence of the approximate solution to the exact solution in the weighted Sobolev space.
Keywords: boundary value problem with degeneration, Sobolev weighted space, generalized solution, finite element method.
@article{VYURV_2019_8_3_a0,
     author = {E. I. Rukavishnikova},
     title = {Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--26},
     year = {2019},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/}
}
TY  - JOUR
AU  - E. I. Rukavishnikova
TI  - Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 5
EP  - 26
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/
LA  - ru
ID  - VYURV_2019_8_3_a0
ER  - 
%0 Journal Article
%A E. I. Rukavishnikova
%T Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 5-26
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/
%G ru
%F VYURV_2019_8_3_a0
E. I. Rukavishnikova. Convergence of the finite element method for boundary value problem with degeneration on the whole boundary of domain. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 3, pp. 5-26. http://geodesic.mathdoc.fr/item/VYURV_2019_8_3_a0/

[1] V. A. Rukavishnikov, E. I. Rukavishnikova, “The Finite Element Method for the First Boundary Value Problem with Coordinated Degeneration of the Initial Data”, Russian Academy of Sciences. Doklady. Mathematics, 50:2 (1995), 335–339

[2] F. Assous, Jr. P. Ciarlet, J. Segr?e, “Numerical Solution of the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domain: The Singular Complement Method”, Journal of Computational Physics, 161 (2000), 218–249 | DOI

[3] M. Costabel, M. Dauge, C. Schwab, “Exponential Convergence of hp-FEM for Maxwell’s Equations with Weighted Regularization in Polygonal Domains”, Mathematical Models and Methods in Applied Sciences, 15:4 (2005), 575–622 | DOI

[4] D. Arroyo, A. Bespalov, N. Heuer, “On the Finite Element Method for Elliptic Problems with Degenerate and Singular Coefficients”, Mathematics of Computation, 76:258 (2007), 509–537 | DOI

[5] H. Li, V. Nistor, “Analysis of a Modified Schrodinger Operator in 2D: Regularity, Index, and FEM”, Journal of Computational and Applied Mathematics, 224:1 (2009), 320–338 | DOI

[6] V. A. Rukavishnikov, E. V. Kuznetsova, “A Scheme of a Finite Element Method for Boundary Value Problems with Non-Coordinated Degeneration of Input Data”, Numerical Analysis and Applications, 2:3 (2009), 250–259 | DOI

[7] V. A. Rukavishnikov, H. I. Rukavishnikova, “The Finite Element Method for a Boundary Value Problem with Strong Singularity”, Journal of Computational and Applied Mathematics, 234:9 (2010), 2870–2882 | DOI

[8] by V. A. Rukavishnikov, A. O. Mosolapov “New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity”, Journal of Computational Physics, 231:6 (2012), 2438–2448 | DOI

[9] V. A. Rukavishnikov, H. I. Rukavishnikova, “On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space”, Numerical Functional Analysis and Optimization, 34:12 (2013), 1328–1347 | DOI

[10] V. A. Rukavishnikov, E. I. Rukavishnikova, “The Finite Element Method for Boundary Value Problems with Strong Singularity and Double Singularity”, Lecture Notes in Computer Science, 8236 (2013), 110–121 | DOI

[11] S. M. Nikol’skij, “A Variational Problem for an Equation of Elliptic Type with Degeneration on the Boundary”, Proceedings of the Steklov Institute of Mathematics, 150 (1981), 227–254

[12] P. I. Lizorkin, S. M. Nikol’skij, “An Elliptic Equation with Degeneracy. A Variational Method”, Soviet Mathematics. Doklady, 23 (1981), 237–240

[13] P. I. Lizorkin, S. M. Nikolskii, “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva reshenii”, Doklady Akademii Nauk SSSR, 257:2 (1981), 278–282

[14] V. A. Rukavishnikov, E. I. Rukavishnikova, “Ob izomorfnom otobrazhenii vesovykh prostranstv ellipticheskim operatorom s vyrozhdeniem na granitse oblasti”, Differentsialnye uravneniya, 50:3 (2014), 349–355 | DOI

[15] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Moskva, 1977, 456 pp.

[16] P. Zh. Oben Zh.-P, Priblizhennoe reshenie ellipticheskikh kraevykh zadach, per. s angl, Mir, Moskva, 1977, 383 pp.

[17] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, Moskva, 1980, 512 pp.