@article{VYURV_2019_8_2_a1,
author = {H. K. Al-Mahdawi},
title = {Development of a numerical method for solving the inverse {Cauchy} problem for the heat equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {22--31},
year = {2019},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a1/}
}
TY - JOUR AU - H. K. Al-Mahdawi TI - Development of a numerical method for solving the inverse Cauchy problem for the heat equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 22 EP - 31 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a1/ LA - en ID - VYURV_2019_8_2_a1 ER -
%0 Journal Article %A H. K. Al-Mahdawi %T Development of a numerical method for solving the inverse Cauchy problem for the heat equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 22-31 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a1/ %G en %F VYURV_2019_8_2_a1
H. K. Al-Mahdawi. Development of a numerical method for solving the inverse Cauchy problem for the heat equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 2, pp. 22-31. http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a1/
[1] S. I. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, Inverse and Ill-Posed Problems Series 55, De Gruyter, 2012, 24 pp.
[2] V. P. Tanana, A. I. Sidikova, Optimal Methods for Solving Ill-posed Heat Conduction Problems, Inverse and Ill-Posed Problems Series 62, De Gruyter, 2018, 40 pp.
[3] P. Duda, “Solution of Inverse Heat Conduction Problem Using the Tikhonov Regularization Method”, Journal of Thermal Science, 26:1 (2017), 60–65 | DOI
[4] V. Ahmadizadeh, Y. Soti, R. Pourgholi, et al., “Estimation of Heat Flux in One-dimensional Inverse Heat Conduction Problem”, International Mathematical Forum, 2:10 (2007), 455–464
[5] H. Mu, J. Li, X. Wang, et al., “Optimization Based Inversion Method for the Inverse Heat Conduction Problems”, IOP Conference Series: Earth and Environmental Science, 64:1 (2017), 1755–1315 | DOI
[6] Y. Zhu, B. Liu, P. Jiang, et al., “Inverse Heat Conduction Problem for Estimating Heat Flux on a Triangular Wall”, Journal of Thermophys Heat Transfer, 31:1 (2017), 205–210 | DOI
[7] A. Frąckowiak, N. D. Botkin, M. Ciałkowski, et al., “Iterative Algorithm for Solving the Inverse Heat Conduction Problems with the Unknown Source Function”, Inverse Problems in Science and Engineering, 23:6 (2015), 1056–1071 | DOI
[8] V. P. Tanana, A. I. Sidikova, “On Estimating the Error of an Approximate Solution Caused by the Discretization of an Integral Equation of the First Kind”, Steklov Institute of Mathematics, 299:1 (2017), 217–224 | DOI