Mots-clés : convergence of solution.
@article{VYURV_2019_8_2_a0,
author = {A. A. Fomin and L. N. Fomina},
title = {The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--21},
year = {2019},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a0/}
}
TY - JOUR AU - A. A. Fomin AU - L. N. Fomina TI - The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 5 EP - 21 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a0/ LA - en ID - VYURV_2019_8_2_a0 ER -
%0 Journal Article %A A. A. Fomin %A L. N. Fomina %T The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 5-21 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a0/ %G en %F VYURV_2019_8_2_a0
A. A. Fomin; L. N. Fomina. The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 2, pp. 5-21. http://geodesic.mathdoc.fr/item/VYURV_2019_8_2_a0/
[1] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, 1980, 197 pp.
[2] V. P. Il’in, Iterative Incomplete Factorization Methods, World Scientific Publishing Co., Singapore, 1992, 300 pp.
[3] B. P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation”, Computer Methods in Applied Mechanics and Engineering, 19:1 (1979), 59–98 | DOI
[4] P. H. Gaskell, A. K. C. Lau, “Curvature–Compensated Convective Transport: SMART, A New Boundedness – Preserving Transport Algorithm”, International Journal for Numerical Methods in Fluids, 8 (1988), 617–641 | DOI
[5] B. P. Leonard, “The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection”, Computer Methods in Applied Mechanics and Engineering, 88:1 (1991), 17–74 | DOI
[6] M. S. Darwish, “A New High-Resolution Scheme Based on the Normalized Variable Formulation”, Numerical Heat Transfer, Part B: Fundamentals, 24 (1993), 353–371 | DOI
[7] M. S. Darwish, F. Moukalled, “The Normalized Weighting Factor Method: a Novel Technique for Accelerating the Convergence of High–Resolution Convective Schemes”, Numerical Heat Transfer, Part B: Fundamentals, 30 (1996), 217–237 | DOI
[8] D. V. Chirkov, S. G. Chernyi, “Comparison of Accuracy and Convergence of Some TVD-Schemes”, Computational Technologies, 5:5 (2000), 86–107
[9] A. I. Sukhinov, A. E. Chistakov, M. V. Yakobovskii, “Accuracy of the Numerical Solution of the Equations of Diffusion–Convection Using the Difference Schemes of Second and Fourth Order Approximation Error”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 5:1 (2016), 47–62 | DOI
[10] L. A. Prokudina, N. M. Yaparova, M. P. Vikhirev, “Numerical Simulation of the Oscillations of the Elements of the Pipe with the Flow of an Incompressible Fluid”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 7:3 (2018), 55–64 | DOI
[11] G. E. Schneider, M. Zedan, “A Modified Strongly Implicit Procedure for the Numerical Solution of Field Problems”, Numerical Heat Transfer, 4:1 (1981), 1–19 | DOI
[12] V. G. Zverev, “Modified Line-by-Line Method for Difference Elliptic Equations”, Computational Mathematics and Mathematical Physics, 38:9 (1998), 1490–1498
[13] D. F. Sikovskii, Computational Thermal Physics Methods, NSU, Novosibirsk, 2013, 98 pp.
[14] A. A. Fomin, L. N. Fomina, “On the Solution of Fluid Flow and Heat Transfer Problem in a 2D Channel with Backward–Facing Step”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 21:2 (2017), 362–375 | DOI
[15] A. A. Fomin, L. N. Fomina, “On the Convergence of the Implicit Iterative Line–by–Line Recurrence Method for Solving Difference Elliptical Equations”, Computer Research and Modeling, 9:6 (2017), 857–880 | DOI
[16] M. S. Darwish, F. H. Moukalled, “Normalized Variable and Space Formulation Methodology for High-Resolution Schemes”, Numerical Heat Transfer, Part B: Fundamentals, 26 (1994), 79–96 | DOI
[17] H. A. Van der Vorst, “BI-CGSTAB: a Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems”, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 631–644 | DOI
[18] A. V. Starchenko, “Comparative Analysis of Some Iterative Methods for the Numerical Solution of a Spatial Boundary Value Problem for Elliptic Equations”, Bulletin of the Tomsk State University. The Bulletin of Operational Scientific Information, 2003, no. 10, 70–80
[19] A. A. Fomin, L. N. Fomina, “Acceleration of the Line-by-Line Recurrent Method in Krylov Subspaces”, Tomsk State University Journal of Mathematics and Mechanics, 2011, no. 2, 45–54
[20] V. N. Faddeeva, Computational Methods of Linear Algebra, Dover Publications, N.Y., 1959, 252 pp.