@article{VYURV_2019_8_1_a3,
author = {M. L. Tsymbler},
title = {Parallel frequent itemset mining on the {Intel} {MIC} accelerators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {54--70},
year = {2019},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a3/}
}
TY - JOUR AU - M. L. Tsymbler TI - Parallel frequent itemset mining on the Intel MIC accelerators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 54 EP - 70 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a3/ LA - ru ID - VYURV_2019_8_1_a3 ER -
%0 Journal Article %A M. L. Tsymbler %T Parallel frequent itemset mining on the Intel MIC accelerators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 54-70 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a3/ %G ru %F VYURV_2019_8_1_a3
M. L. Tsymbler. Parallel frequent itemset mining on the Intel MIC accelerators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 54-70. http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a3/
[1] V. V. Voevodin, Vl. V. Voevodin, Parallel Computing, BHV-Petersburg, SPb, 2002, 608 pp.
[2] R. Agrawal, R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases”, VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases (September 12–15, 1994, Santiago de Chile, Chile), 1994, 487–499
[3] D. F. Bacon, S. L. Graham, O. J. Sharp, “Compiler Transformations for High-Performance Computing”, ACM Computing Surveys, 26:4 (1994), 345–420 | DOI
[4] C. Borgelt, “Frequent Item Set Mining”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2:6 (2012), 437–456 | DOI
[5] S. Brin, R. Motwani, J. D. Ullman, S. Tsur, “Dynamic Itemset Counting and Implication Rules for Market Basket Data”, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data (May 13–15, 1997, Tucson, Arizona, USA), 1997, 255–264 | DOI
[6] D. Burdick, M. Calimlim, J. Flannick, et al., “MAFIA: A Maximal Frequent Itemset Algorithm”, IEEE Transactions on Knowledge and Data Engineering, 17:11 (2005), 1490–1504 | DOI
[7] Y. Chang, J. Chen, Y. Tsai, “Mining Subspace Clusters from DNA Microarray Data Using Large Itemset Techniques”, Journal of Computational Biology, 16:5 (2009), 745–768 | DOI
[8] D. W. Cheung, K. Hu, S. Xia, “An Adaptive Algorithm for Mining Association Rules on Shared-Memory Parallel Machines”, Distributed and Parallel Databases, 9:2 (2001), 99–132 | DOI | Zbl
[9] J. Dong, M. Han, “BitTableFI: An Efficient Mining Frequent Itemsets Algorithm”, Knowledge-Based Systems, 20:4 (2007), 329–335 | DOI
[10] A. Duran, M. Klemm, “The Intel Many Integrated Core Architecture”, 2012 International Conference on High Performance Computing and Simulation, HPCS 2012 (Madrid, Spain, July 2–6, 2012), 2012, 365–366 | DOI
[11] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate Generation”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (May 16–18, 2000, Dallas, Texas, USA), 1–12 | DOI
[12] IBM Quest Synthetic Data Generator } {\tt https://ibmquestdatagen.sourceforge.io/
[13] P. Kostenetskiy, A. Safonov, “SUSU Supercomputer Resources”, PCT’2016, International Scientific Conference on Parallel Computational Technologies (Arkhangelsk, Russia, March 29–31, 2016.), v. 1576, CEUR Workshop Proceedings, 561–573
[14] P. Kumar, P. Bhatt, R. Choudhury, “Bitwise Dynamic Itemset Counting Algorithm”, Proceedings of the ICCIC 2015, IEEE International Conference on Computational Intelligence and Computing Research (December 10–12, 2015, Madurai, India), 2015, 1–4 | DOI
[15] J. Li, A. W. Fu, P. Fahey, “Efficient Discovery of Risk Patterns in Medical Data”, Artificial Intelligence in Medicine, 45:1 (2009), 77–89 | DOI
[16] R. Lischner, STL Reference: Containers, Iterators, and Algorithms, O’Reilly, 2003, 120 pp.
[17] C. Ordonez, N. F. Ezquerra, C. A. Santana, “Constraining and Summarizing Association Rules in Medical Data”, Knowledge and Information Systems, 9:3 (2006), 1–2 | DOI
[18] C. Ordonez, C. A. Santana, L. de Braal, “Discovering Interesting Association Rules in Medical Data”, 2000 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, Texas, USA, May 14, 2000, 2000, 78–85
[19] P. Paranjape-Voditel, U. Deshpande, “A DIC-based Distributed Algorithm for Frequent Itemset Generation”, Journal of Software, 6:2 (2011), 306–313 | DOI
[20] O. Pattanaprateep, M. McEvoy, J. Attia, A. Thakkinstian, “Evaluation of Rational Nonsteroidal Anti-inflammatory Drugs and Gastro-protective Agents Use; Association Rule Data Mining Using Outpatient Prescription Patterns”, BMC Medical Informatics and Decision Making, 17:1 (2017), 96:1–96:7 | DOI
[21] B. Schlegel, T. Karnagel, T. Kiefer, W. Lehner, “Scalable Frequent Itemset Mining on Many-core Processors”, Proceedings of the 9th International Workshop on Data Management on New Hardware, DaMoN 2013 (New York, NY, USA, June 24, 2013), 2013, 3 | DOI | Zbl
[22] I. Sokolinskaya, L. Sokolinsky, “Revised Pursuit Algorithm for Solving Non-stationary Linear Programming Problems on Modern Computing Clusters with Manycore Accelerators”, Supercomputing. RuSCDays 2016. Communications in Computer and Information Science, 687 (2016), 212–223 | DOI
[23] M. J. Zaki, “Scalable Algorithms for Association Mining”, IEEE Transactions on Knowledge and Data Engineering, 12:3 (2000), 372–390 | DOI
[24] M. Zymbler, “Accelerating Dynamic Itemset Counting on Intel Many-core Systems”, Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO’2017 (Opatija, Croatia, May 22–26, 2017), IEEE, 2017, 1575–1580 | DOI