Scalability evaluation of Cimmino algorithm for solving systems of linear inequalities on cluster computing systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 20-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a scalability study of Cimmino algorithm for linear inequality systems. This algorithm belongs to the class of iterative projection algorithms. For the analytical analysis of the scalability, the BSF (Bulk Synchronous Farm) parallel computation model is used. An implementation of the Cimmino algorithm in the form of operations on lists using higher-order functions Map and Reduce is presented. An analytical estimation of the upper scalability bound of the algorithm for cluster computing systems is derived. Information about the implementation of Cimmino algorithm on lists in C++ language using the BSF program skeleton and MPI parallel programming library is given. The results of large-scale computational experiments performed on a cluster computing system are demonstrated. A conclusion about the adequacy of the analytical estimations by comparing them with the results of computational experiments is made.
Keywords: Cimmino algorithm, system of linear inequalities, iterative algorithm, projection algorithm, parallel computation model, BSF, scalability estimation, speedup, parallel efficiency, cluster computing systems.
@article{VYURV_2019_8_1_a1,
     author = {I. M. Sokolinskaya and L. B. Sokolinsky},
     title = {Scalability evaluation of {Cimmino} algorithm for solving systems of linear inequalities on cluster computing systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {20--35},
     year = {2019},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a1/}
}
TY  - JOUR
AU  - I. M. Sokolinskaya
AU  - L. B. Sokolinsky
TI  - Scalability evaluation of Cimmino algorithm for solving systems of linear inequalities on cluster computing systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2019
SP  - 20
EP  - 35
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a1/
LA  - ru
ID  - VYURV_2019_8_1_a1
ER  - 
%0 Journal Article
%A I. M. Sokolinskaya
%A L. B. Sokolinsky
%T Scalability evaluation of Cimmino algorithm for solving systems of linear inequalities on cluster computing systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2019
%P 20-35
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a1/
%G ru
%F VYURV_2019_8_1_a1
I. M. Sokolinskaya; L. B. Sokolinsky. Scalability evaluation of Cimmino algorithm for solving systems of linear inequalities on cluster computing systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 20-35. http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a1/

[1] R. W. Cottle, J.-S. Pang, R. E. Stone, The Linear Complementarity Problem, Society for Industrial and Applied Mathematics, 2009, xxiv + 757 pp. | DOI | MR | Zbl

[2] I. Sokolinskaya, L. B. Sokolinsky, “On the Solution of Linear Programming Problems in the Age of Big Data”, Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science., Springer, 2017, 86–100

[3] Y. Censor, et al., “On Diagonally Relaxed Orthogonal Projection Methods”, SIAM Journal on Scientific Computing. Society for Industrial and Applied Mathematics, 30:1 (2008), 473–504 | DOI | MR | Zbl

[4] J. Zhu, X. Li, “The Block Diagonally-Relaxed Orthogonal Projection Algorithm for Compressed Sensing Based Tomography”, 2011 Symposium on Photonics and Optoelectronics (SOPO) (Wuhan, China, 16–18 May 2011), IEEE, 2011, 1–4 | DOI

[5] Y. Censor, “Mathematical optimization for the inverse problem of intensity-modulated radiation therapy”, Intensity-Modulated Radiation Therapy: The State of the Art, ed. J. R. Palta, T. R. Mackie, Medical Physics Publishing, Madison, WI, 2003, 25–49 | DOI

[6] S. Agmon, “The relaxation method for linear inequalities”, Canadian Journal of Mathematics, 6 (1954), 382–392 | DOI | MR | Zbl

[7] T. S. Motzkin, I. J. Schoenberg, “The relaxation method for linear inequalities”, Canadian Journal of Mathematics, 6 (1954), 393–404 | DOI | MR | Zbl

[8] G. Cimmino, “Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari”, La Ricerca Scientifica, XVI, Series II, Anno IX, 1 (1938), 326–333

[9] M. Benzi, “Gianfranco Cimmino’s Contributions to Numerical Mathematics”, Atti del SemiSeminario di Analisi Matematica, Dipartimento di Matematica dell’Universit`a di Bologna, Ciclo di Conferenze in Ricordo di Gianfranco Cimmino, 2004, Tecnoprint, Bologna, Italy, 2005, 87–109 | MR

[10] Y. Censor, S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, New York, 1997 | MR | Zbl

[11] Y. Censor, T. Elfving, “New methods for linear inequalities”, Linear Algebra and its Applications, 42 (1982), 199–211 | DOI | MR | Zbl

[12] Y. Censor, “Sequential and parallel projection algorithms for feasibility and optimization”, Proc. SPIE 4553, Visualization and Optimization Techniques (25 September 2001), ed. Y. Censor, M. Ding, International Society for Optics and Photonics, 2001, 1–9 | DOI

[13] C. T. Kelley, “Iterative Methods for Linear and Nonlinear Equations”, Philadelphia: Society for Industrial and Applied Mathematics, 1995, 1995. xiii + 156 | DOI | MR | Zbl

[14] G. Bilardi, A. Pietracaprina, “Models of Computation, Theoretical”, Encyclopedia of Parallel Computing, 2011. P, 1150–1158 | DOI

[15] J. F. JaJa, “PRAM (Parallel Random Access Machines)”, Encyclopedia of Parallel Computing, 2011, 1608–1615 | DOI

[16] L. G. Valiant, “A bridging model for parallel computation”, Communications of the ACM, 33:8 (1990), 103–111 | DOI

[17] D. Culler et al., “LogP: towards a realistic model of parallel computation”, Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel programming, PPOPP ’93, ACM Press, New York, New York, USA, 1993, 1–12 | DOI

[18] M. Forsell, V. Leppänen, “An extended PRAM-NUMA model of computation for TCF programming”, Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2012, IEEE Computer Society, Washington, DC, USA, 2012, 786–793 | DOI

[19] A. Gerbessiotis, “V. Extending the BSP model for multi-core and out-of-core computing: MBSP”, Parallel Computing, 41 (2015), 90–102 | DOI

[20] F. Lu, J. Song, Y. Pang, “HLognGP: A parallel computation model for GPU clusters”, Concurrency and Computation: Practice and Experience, 27:17 (2015), 4880–4896 | DOI

[21] L. B. Sokolinsky, “Analytical Estimation of the Scalability of Iterative Numerical Algorithms on Distributed Memory Multiprocessors”, Lobachevskii Journal of Mathematics, 39:4 (2018), 571–575 | DOI

[22] I. Sokolinskaya, L. B. Sokolinsky, “Scalability evaluation of the NSLP algorithm for solving non-stationary linear programming problems on cluster computing systems”, Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, v. 793, Springer, Cham, 2017, 40–53 | DOI

[23] M. I. Cole, “Parallel programming with list homomorphisms”, Parallel Processing Letters, 5:2 (1995), 191–203 | DOI

[24] I. Sokolinskaya, L. Sokolinsky, “Revised Pursuit Algorithm for Solving Non-stationary Linear Programming Problems on Modern Computing Clusters with Manycore Accelerators”, Supercomputing. RuSCDays 2016. Communications in Computer and Information Science, Springer, Cham, 2016, 212–223 | DOI

[25] P. S. Kostenetskiy, A. Y. Safonov, “SUSU Supercomputer Resources”, Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT 2016), CEUR Workshop Proceedings, v. 1576, 2016, 561–573 | MR