Mots-clés : multidimensional torus, fragmentation
@article{VYURV_2019_8_1_a0,
author = {A. V. Mukosey and A. S. Semenov and A. S. Simonov},
title = {Allocation optimization for reducing resource utilization in {Angara} high-speed interconnect},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--19},
year = {2019},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a0/}
}
TY - JOUR AU - A. V. Mukosey AU - A. S. Semenov AU - A. S. Simonov TI - Allocation optimization for reducing resource utilization in Angara high-speed interconnect JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2019 SP - 5 EP - 19 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a0/ LA - ru ID - VYURV_2019_8_1_a0 ER -
%0 Journal Article %A A. V. Mukosey %A A. S. Semenov %A A. S. Simonov %T Allocation optimization for reducing resource utilization in Angara high-speed interconnect %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2019 %P 5-19 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a0/ %G ru %F VYURV_2019_8_1_a0
A. V. Mukosey; A. S. Semenov; A. S. Simonov. Allocation optimization for reducing resource utilization in Angara high-speed interconnect. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 8 (2019) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURV_2019_8_1_a0/
[1] A. A. Agarkov, T. F. Ismagilov, D. V. Makagon, “Performance Evaluation of the Angara Interconnect”, Russian Supercomputing Days: Proceedings of the International Scientific Conference (Moscow, Russia, September, 26–27, 2016), Publishing of Moscow State University, Moscow, 2016, 626–639
[2] A. S. Simonov, D. V. Makagon, I. A. Zhabin, A. N. Shcherbak, E. L. Syromyatnikov, D. A. Polyakov, “The First Generation of Angara High-Speed Interconnect”, Science Intensive Technologies, 15:1 (2014), 21–28
[3] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, C. Izu, “Adaptive Bubble Router: a Design to Improve Performance in Torus Networks”, Proceedings of the International Conference Parallel Processing (ICPP), 1999, 58–67 | DOI
[4] N. R. Adiga, M. Blumrich, D. Chen, “Blue Gene/L Torus Interconnection Network”, IBM Journal of Research and Development, 49:2 (2005), 265–276 | DOI
[5] S. L. Scott, The Cray T3E Network: Adaptive Routing in a High Performance 3D Torus, 1996
[6] I. A. Pozhilov, A. S. Semenov, D. V. Makagon, “Connectivity Problem Solution for Direction Ordered Deterministic Routing in nD Torus”, Software Engineering, 2015, no. 3, 13–19
[7] Z. Lan, W. Tang, J. Wang, X. Yang, Z. Zhou, X. Zheng, “Balancing Job Performance with System Performance via Locality-aware Scheduling on Torus-connected Systems”, 2014 IEEE International Conference on Cluster Computing (CLUSTER), 2014, 140–148 | DOI
[8] IBM Redbooks Publication: IBM System Blue Gene Solution: Blue Gene/Q System Administration, 2013, 282 pp.
[9] W. Tang, Z. Lan, N. Desai, D. Buettner, Y. Yu, “Reducing Fragmentation on Torus-Connected Supercomputers”, Proceedings of the 2011 IEEE International Parallel Distributed Processing Symposium (IPDPS’11), IEEE Computer Society, Washington, DC, USA, 2011, 828–839 | DOI
[10] Cray Document: Managing System Software for Cray XE and Cray XT Systems, 2010
[11] U. Schwiegelshohn, R. Yahyapour, “Analysis of First-Come-First-Serve Parallel Job Scheduling”, SODA, 98 (1998), 629–638 | MR
[12] P. N. Polezhaev, “The Study of Parallel Job Scheduling Algorithms for Cluster Computing Systems Using a Simulator”, Parallel Computational Technologies (PCT’2010): Proceedings of the International Scientific Conference (Ufa, Russia, March, 29–April, 2, 2010), Publishing of the South Ural State University, Chelyabinsk, 2010, 287–298
[13] A. W. Mu’alem, D. G. Feitelson, “Utilization, Predictability, Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling”, IEEE Transactions on Parallel and Distributed Systems, 12:6 (2001), 529–543 | DOI
[14] R. L. Henderson, “Job Scheduling Under the Portable Batch System”, Workshop on Job Scheduling Strategies for Parallel Processing, Springer, Berlin, Heidelberg, 1995, 279–294 | DOI
[15] G. Staples, “TORQUE Resource Manager”, Proceedings of the 2006 ACM/IEEE Conf. on Supercomputing, 2006, 8, ACM
[16] D. Jackson, Q. Snell, M. Clement, “Core Algorithms of the Maui Scheduler”, Workshop on Job Scheduling Strategies for Parallel Processing, 2001, 87–102, Springer, Berlin, Heidelberg | DOI | Zbl
[17] W. Gentzsch, “Sun Grid Engine: Towards Creating a Compute Power Grid”, Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, IEEE, 2001, 35–36 | DOI
[18] A. V. Baranov, S. V. Smirnov, M. Yu. Khramtsov, S. V. Sharf, “Modernization of the SUPZ MBS-1000”, Materials of the All-Russian Scientific Conference “Scientific Service on the Internet” (22–27 September 2008, Novorossiysk), MSU Publishing House, Moscow, 2008, 226–227
[19] SchedMD L. L. C. SLURM Workload Manager, , 2018 https://slurm.schedmd.com/overview.html
[20] A. V. Mukosey, A. S. Semenov, “Allocation Optimization for Reducing Resource Fragmentation in Angara High-speed Interconnect”, Parallel Computational Technologies (PCT’2018): Proceedings of the International Scientific Conference (Rostov-na-Donu, Russia, April, 2–6, 2018), Chelyabinsk, Publishing of the South Ural State University, 2018, 310–318
[21] S. H. Woo, “Task Scheduling in Distributed Computing Systems with a Genetic Algorithm”, High Performance Computing on the Information Superhighway, HPC Asia’97, IEEE, 1997, 301–305 | DOI
[22] V. S. Vecher, N. D. Kondratyuk, G. S. Smirnov, V. V. Stegailov, “Angara-based hybrid supercomputer for efficient acceleration of computational materials science studies”, Russian Supercomputing Days: Proceedings of the International Conference (Moscow, Russia, September, 25–26, 2017), Publishing of Moscow State University, Moscow, 2017, 557–571
[23] A. V. Mukosey, A. S. Semenov, “An Approximate Algorithm for Choosing the Optimal Subset of Nodes in the Angara Interconnect with Failures”, Numerical methods and Programming, 18 (2017), 53–64
[24] A. V. Baranov, E. A. Kiselev, D. S. Lyakhovets, “The Quasi Scheduler for Utilization of Multiprocessing Computing System’s Idle Resources Under Control of the Management System of the Parallel Jobs”, Bulletin of South Ural State University. Series: Mathematical Modeling, Programming Computer Software, 3:4 (2014), 75–84 | DOI | MR
[25] J. F. Gonçalves, M. G. C. Resende, “A Parallel Multi-population Biased Random-key Genetic Algorithm for a Container Loading Problem”, Computers Operations Research. February 2012, 39:2 (2012), 179–190 | DOI | MR | Zbl