Mots-clés : maximum clique prob- lem, polynomial algorithm
@article{VYURV_2018_7_4_a5,
author = {S. A. Tushev and B. M. Sukhovilov},
title = {Polynomial point matching algorithm based on epipolar geometry},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {83--104},
year = {2018},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a5/}
}
TY - JOUR AU - S. A. Tushev AU - B. M. Sukhovilov TI - Polynomial point matching algorithm based on epipolar geometry JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2018 SP - 83 EP - 104 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a5/ LA - ru ID - VYURV_2018_7_4_a5 ER -
%0 Journal Article %A S. A. Tushev %A B. M. Sukhovilov %T Polynomial point matching algorithm based on epipolar geometry %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2018 %P 83-104 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a5/ %G ru %F VYURV_2018_7_4_a5
S. A. Tushev; B. M. Sukhovilov. Polynomial point matching algorithm based on epipolar geometry. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 4, pp. 83-104. http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a5/
[1] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed, Cambridge University Press, 2004
[2] S. A. Tushev, B. M. Sukhovilov, E. M. Sartasov, “Architecture of Industrial Close-Range Photogrammetric System with Multi-Functional Coded Targets”, Procedings of the 2017 2nd International Ural Conference on Measurements (UralCon) (Chelyabinsk, Russia, 2017), IEEE Xplore Digital Library, 2017, 435–442 | DOI
[3] S. A. Tushev, B. M. Sukhovilov, “Efficiency Analysis of Photogrammetric System by Simulation Modelling. Bulletin of the South Ural State University. Ser”, Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 11:1 (2018), 109–123 | DOI
[4] S. A. Tushev, B. M. Sukhovilov, “Parallel Algorithms for Effective Correspondence Problem Solution in Computer Vision”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 6:2 (2017), 49–68 | DOI
[5] D. G. Lowe, “Distinctive Image Features from Scale Invariant Keypoints”, International Journal of Computer Vision, 60 (2004), 91–110 | DOI
[6] H. Bay, T. Tuytelaars, G. o. van, “SURF: Speeded Up Robust Features”, Computer Vision and Image Understanding, 110:3 (2008), 346–359 | DOI
[7] C. Harris, M. A. Stephens, “A Combined Corner and Edge Detector”, Proceedings of the 4th Alvey Vision Conference, 1988, 147–151 | DOI
[8] S. A. Tushev, B. M. Sukhovilov, “Effective Graph-Based Point Matching Algorithms”, Procedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM (Chelyabinsk, Russia, 2016.), IEEE Xplore Digital Library, 1–5 | DOI
[9] B. M. Sukhovilov, E. M. Sartasov, E. A. Grigorova, “Improving the Accuracy of Determining the Position of the Code Marks in the Problems of Constructing Three-dimensional Models of Objects”, Procedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM (Chelyabinsk, Russia, 2016), IEEE Xplore Digital Library, 1–4 | DOI
[10] H. -G. Maas, “Complexity Analysis for the Establishment of Image Correspondences of Dense Spatial Target Fields”, International Archives of Photogrammetry and Remote Sensing, 29 (1992), 102–107
[11] J. Dold, H. -G. Maas, “An Application of Epipolar Line Intersection in a Hybrid Close Range Photogrammetric System”, International Archives of Photogrammetry and Remote Sensing, 30:5 (1994), 65–70
[12] H. -G. Maas, A. Gruen, “Digital Photogrammetric Techniques for High-Resolution ThreeDimensional Flow Velocity Measurements”, Optical Engineering, 34:7 (1995), 1970–1976
[13] Z. Zhu, et al., “et al. Automatic Three-Dimensional Measurement of Large-Scale Structure Based on Vision Metrology”, Scientific World Journal, 2014:Article ID 185269 (2014), 10 pages | DOI
[14] D. V. Yurin, “A Modern Review of the Structure of Automatic Systems for 3D Reconstruction from Images”, Proceedings of International Scientific Conference Dedicated to the 80th Anniversary of Academician V.A. Melnikov, 2009, 118–121
[15] Z. Zhang, et al., “et al. A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry”, Artificial Intelligence, 78:1 (1995), 1–2 | DOI
[16] V. Kolmogorov, R. Zabih, “Computing Visual Correspondence with Occlusions Using Graph Cuts”, Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001 (Vancouver, British Columbia, Canada, July 7–14), v. 2, 2001, 508–515 | DOI
[17] A. Y. Tuzhilkin, A. A. Zaharov, A. L. Zhiznyakov, “Finding Matches on Images Using Eigendecomposition of Graphs for 3D Reconstruction Tasks”, Polzunov Bulletin, 2:4 (2015), 37–39
[18] T. A. Clarke, et al., “et al. Automated Three Dimensional Measurement Using Multiple CCD Camera Views”, The Photogrammetric Record, 15:85 (1995), 27–42
[19] C. Leung, B. C. Lovell, “3D Reconstruction through Segmentation of Multi-View Image Sequences”, Proceedings of the 2003 APRS Workshop on Digital Image Computing, 2003, 87–92
[20] F. Qiqiang, L. Guangyun, “Matching of Artificial Target Points Based on Space Intersection”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (2008), 111–114
[21] C. S. Fraser, S. Cronk, “A Hybrid Measurement Approach for Close-Range Photogrammetry”, ISPRS Journal of Photogrammetry and Remote Sensing, 64:3 (2009), 328–333 | DOI
[22] B. Triggs, et al., “et al. Bundle Adjustment – A Modern Synthesis”, Vision Algorithms: Theory and Practice, 1883 (2000), 298–372 | DOI
[23] A. P. Züge, R. Carmo, “On Comparing Algorithms for the Maximum Clique Problem”, Discrete Applied Mathematics. Elsevier B.V., 2018. No, 2, no. 2, 1–13 | DOI
[24] J. W. Moon, L. Moser, “On Cliques in Graphs”, Israel Journal of Mathematics, 3:1 (1965), 3–28 | DOI
[25] J. M. Robson, Finding a Maximum Independent Set in Time O(2\^{ }(n/4)), Technical Report of the Universite de Bordeaux I } {\tt https://www.labri.fr/perso/robson/mis/techrep.html
[26] Concurrency Runtime } {\tt https://msdn.microsoft.com/en-us/library/dd504870.aspx