Development of computer models of modified aramid fabric
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 4, pp. 30-40
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the development of models of modified aramid fabrics (aramid fabrics with surface treatment) using numerical methods that are used in armored elements. Minimizing the mass of armored elements or body armor, reducing the amount of deflection of the back side of the armored panel (reducing the level of trauma to the human body) are actual tasks of today. Most of the energy of a bullet is dissipated due to the work of friction forces when pulling the threads from aramid fabrics in a body armor. Surface treatment of fabrics allows to increase the frictional interaction of the threads and to reduce the deflection of fabric barriers during a local impact. Surface treatment adds little weight to the fabric. The software for creating a mesh of finite elements of fabrics with surface treatment is developed, designed and implemented, and tested. The software allows you to create numerical models of modified aramid fabrics with a continuous and partial surface treatment (stripes along the X and Y axes in the plane of the fabric). Aramid fabric P110 with the surface treatment of PVA is considered in the work. The model of fabric with a continuous surface treatment is developed. The surface treatment was built with shell elements that connected the warp and weft threads from the outside. Supercomputer modeling of impact loading of modified aramid fabric located on technical plasticine in the LS-DYNA software package was carried out. The comparison of the obtained data to the experimental data was carried out, the speed-up graph was obtained.
Keywords: finite element method, supercomputer modelling, aramid fabric, surface treatment, impact, technical plasticine
Mots-clés : LS-DYNA.
@article{VYURV_2018_7_4_a1,
     author = {N. Yu. Dolganina and A. V. Ignatova and I. S. Slobodin},
     title = {Development of computer models of modified aramid fabric},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {30--40},
     year = {2018},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a1/}
}
TY  - JOUR
AU  - N. Yu. Dolganina
AU  - A. V. Ignatova
AU  - I. S. Slobodin
TI  - Development of computer models of modified aramid fabric
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 30
EP  - 40
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a1/
LA  - ru
ID  - VYURV_2018_7_4_a1
ER  - 
%0 Journal Article
%A N. Yu. Dolganina
%A A. V. Ignatova
%A I. S. Slobodin
%T Development of computer models of modified aramid fabric
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 30-40
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a1/
%G ru
%F VYURV_2018_7_4_a1
N. Yu. Dolganina; A. V. Ignatova; I. S. Slobodin. Development of computer models of modified aramid fabric. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 4, pp. 30-40. http://geodesic.mathdoc.fr/item/VYURV_2018_7_4_a1/

[1] M. A. Abtew, F. Boussu, P. Bruniaux, C. Loghin, I. Cristian, Y. Chen, L. Wang, “Forming characteristics and surface damages of stitched multi-layered para-aramid fabrics with various stitching parameters for soft body armour design”, Composites Part A: Applied Science and Manufacturing, 109 (2018), 517–537 | DOI

[2] S. Chocron, E. Figueroa, N. King, et al., “Modeling and validation of full fabric targets under ballistic impact”, Composites Science and Technology, 70:13 (2010), 2012–2022 | DOI

[3] S. Das, S. Jagan, A. Shaw, A. Pal, “Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact”, Composite Structures, 120 (2015), 129–140 | DOI

[4] S. Gatouillat, A. Bareggi, E. Vidal-Sallé, P. Boisse, “Meso modelling for composite preform shaping – Simulation of the loss of cohesion of the woven fibre network”, Composites: Part A, 54 (2013), 135–144 | DOI

[5] C. Ha-Minh, A. Imad, T. Kanit, F. Boussu, “Numerical analysis of a ballistic impact on textile fabric”, International Journal of Mechanical Sciences, 69 (2013), 32–39 | DOI

[6] T. A. Hassan, V. K. Rangari, S. Jeelani, “Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites”, Materials Science and Engineering A, 527 (2010), 2892–2899 | DOI

[7] A. V. Ignatova, N. Y. Dolganina, S. B. Sapozhnikov, A. A. Shabley, “Aramid fabric surface treatment and its impact on the mechanics of yarn’s frictional interaction”, PNRPU Mechanics Bulletin, 4 (2017), 121–137 | DOI

[8] P. Kedzierski, R. Gieleta, A. Morka, et al., “Experimental study of hybrid soft ballistic structures”, Composite Structures, 153 (2016), 204–211 | DOI

[9] Y. u. Kim, Y. Park, J. i. Cha, V. A. Ankem, C. G. Kim, “Behavior of Shear Thickening Fluid (STF) impregnated fabric composite rear wall under hypervelocity impact”, Composite Structures, 204 (2018), 52–62 | DOI

[10] P. S. Kostenetskiy, A. Y. Safonov, “SUSU Supercomputer Resources”, CEUR Workshop Proceedings, Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (Arkhangelsk, Russia, March 29–31, 2016), v. 1576, 2016, 29–31

[11] C. T. Lim, V. P. W. Shim, Y. H. Ng, “Finite-element modeling of the ballistic impact of fabric armor”, International Journal of Impact Engineering, 28 (2003), 13–31 | DOI

[12] LS-DYNA R7.0 Keyword user's manual. LSTC, 2013, 2206 pp.

[13] G. Nilakantan, S. Nutt, “Effects of clamping design on the ballistic impact response of soft body armor”, Composite Structures, 108 (2014), 137–150 | DOI

[14] S. B. Sapozhnikov, A. V. Ignatova, “Mechanical properties of technical plasticine under static and dynamic loadings”, PNRPU Mechanics Bulletin, 2 (2014), 201–219

[15] V. B. C. Tan, C. T. Lim, C. H. Cheong, “Perforation of high-strength fabric by projectiles of different geometry”, International Journal of Impact Engineering, 28:2 (2003), 207–222 | DOI

[16] N. Yu. Dolganina, A. V. Ignatova, “The development of computer models of ballistic fabric with surface treatment”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 6:4 (2017), 91–100 | DOI