Practical aspects of implementation of the parallel algorithm for solving problem of ctenophore population interaction in the Azov Sea
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 3, pp. 31-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper covers the development and researching mathematical model of interaction processes between plankton and ctenophore populations based on the modern information technologies and computational methods, which leads to increase of the accuracy of predictive modeling of the ecology situation in shallow water in summer. The model takes into account the following: the transport of water environment; microturbulent diffusion; nonlinear interaction of plankton and ctenophore populations; biogenic, temperature and oxygen regimes; influence of salinity. The computational accuracy is significantly increased, and computational time is decreased at using the calculation method based on partially filled cells for discretization of model. The practical significance is the software implementation of the proposed model, the limits and prospects of its practical use are defined. Experimental software was developed based on multiprocessor computer system, which is intended for mathematical modeling of possible progress scenarios in shallow waters ecosystems on the example of the Azov Sea in summer. We used decomposition methods of grid domains in parallel implementation for computationally laborious convection-diffusion problems, taking into account the architecture and parameters of multiprocessor computer system.
Keywords: mathematical model, hydrological processes, expedition research, Azov Sea, parallel algorithm, multiprocessor computer system.
Mots-clés : ctenophore
@article{VYURV_2018_7_3_a2,
     author = {A. I. Sukhinov and A. V. Nikitina and A. E. Chistyakov and A. A. Semenyakina},
     title = {Practical aspects of implementation of the parallel algorithm for solving problem of ctenophore population interaction in the {Azov} {Sea}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {31--54},
     year = {2018},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a2/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. V. Nikitina
AU  - A. E. Chistyakov
AU  - A. A. Semenyakina
TI  - Practical aspects of implementation of the parallel algorithm for solving problem of ctenophore population interaction in the Azov Sea
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 31
EP  - 54
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a2/
LA  - en
ID  - VYURV_2018_7_3_a2
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. V. Nikitina
%A A. E. Chistyakov
%A A. A. Semenyakina
%T Practical aspects of implementation of the parallel algorithm for solving problem of ctenophore population interaction in the Azov Sea
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 31-54
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a2/
%G en
%F VYURV_2018_7_3_a2
A. I. Sukhinov; A. V. Nikitina; A. E. Chistyakov; A. A. Semenyakina. Practical aspects of implementation of the parallel algorithm for solving problem of ctenophore population interaction in the Azov Sea. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 3, pp. 31-54. http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a2/

[1] E. A. Shushkina, M. E. Vinogradov, “Izmeneniya planktona v otkrytykh regionakh Chernogo morya v techenie mnogikh let”, Okeanologiya, 31:6 (1991), 973–980

[2] E. A. Shushkina, E. I. Musaeva, L. L. Anokhina, T. A. Lukasheva, “Rol zheletelogo makroplanktona, meduzy Aurelia i grebnevikov Mnemiopsis i Be v soobschestvakh planktona Chernogo morya”, Okeanologiya, 40:6 (2000), 859–866

[3] V. V. Povazhnyi, “Moiseev D.V. Sovremennoe sostoyanie populyatsii grebnevika Mnemiopsis leidyi (A. Adassiz) v Taganrogskom zalive”, Ekosistemnye issledovaniya Azovskogo, Chernogo, Kaspiiskogo morei, v. VIII, Izd-vo KNTs RAN, Apatity, 2006, 132–141

[4] A. M. Kamakin, V. F. Zaitsev, D. N. Katunin, “Ekologo-biologicheskoe obosnovanie matematicheskogo modelirovaniya populyatsii grebnevika Mnemiopsis leidyi v Kaspiiskom more”, Vestnik AGTU. Ser.: Rybnoe khozyaistvo, 2015, 47–61

[5] S. I. Dudkin, T. V. Lozhichevskaya, I. A. Mirzoyan, “Metabolizm grebnevika Mnemiopsis leidyi v Azovskom areale i nekotorye ekologicheskie posledstviya ego vseleniya”, Tezisy dokladov 8 s'ezda Gidrobiologicheskogo obschestva RAN, Kaliningrad, 2001, 76–77

[6] Portal «Analiticheskie GIS», } {\tt http://geo.iitp.ru/index.php

[7] T. A. Shiganova, V. V. Sapozhnikov, E. I. Musaeva i dr., “Usloviya, opredelyayuschie raspredelenie grebnevika Mnemiopsis leidyi i ego vozdeistvie na ekosistemu Severnogo Kaspiya”, Okeanologiya, 43:5 (2003), 716–733

[8] Grebnevik Mnemiopsis leidyi (A. Agassiz) v Azovskom i Chernom moryakh i posledstviya ego vseleniya, ed. S. P. Volovik, Rostov-na-Donu, 200, 320 pp.

[9] A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “Numerical Modeling of an Ecological Condition of the Sea of Azov with Application of Schemes of the Raised Accuracy Order on the Multiprocessor Computing System”, Computer researches and modeling, 8:1 (2016), 151–168

[10] A. I. Sukhinov, A. E. Chistyakov, A. V. Nikitina, A. A. Semenyakina, Y. E. Korovin, G. Schaefer, “Modelling of Oil Spill Spread”, 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), 2016, 1134–1139

[11] Nauchno-issledovatelskii tsentr «Planeta», } {\tt planet.iitp.ru

[12] A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, I. S. Semenov, A. A. Semenyakina, D. S. Khachunts, “Mathematical Modeling of Eutrophication Processes in Shallow Waters on Multiprocessor Computer System”, 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT 2016): CEUR Workshop Proceedings, 1576 (2016), 320–333

[13] A. V. Nikitina, A. I. Sukhinov, G. A. Ugolnitsky, A. B. Usov, A. E. Chistyakov, M. V. Puchkin, I. S. Semenov, “Optimal Control of Sustainable Development in the Biological Rehabilitation of the Azov Sea”, Mathematical Models and Computer Simulations, 9:1 (2017), 101–107

[14] A. V. Nikitina, M. V. Tretyakova, “Modelirovanie protsessa algolizatsii melkovodnogo vodoema putem vseleniya v nego shtamma zelenoi vodorosli Chlorella vulgaris bin”, Izvestiya YuFU. Tekhnicheskie nauki, 2012, no. 1, 128–133

[15] A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, I. S. Semenov, “Matematicheskoe modelirovanie uslovii formirovaniya zamorov v melkovodnykh vodoemakh na mnogoprotsessornoi vychislitelnoi sisteme”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 14:1 (2013), 103–112

[16] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, “Dvumernaya gidrodinamicheskaya model, uchityvayuschaya dinamicheskoe perestroenie geometrii dna melkovodnogo vodoema”, Izvestiya YuFU. Tekhnicheskie nauki, 2011, no. 8(121), 159–167

[17] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, “Postroenie diskretnoi dvumernoi matematicheskoi modeli transporta nanosov”, Izvestiya YuFU. Tekhnicheskie nauki, 2011, no. 8(121), 32–44

[18] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, “Mathematical Modeling of Sediment Transport in the Coastal Zone of Shallow Reservoirs”, Mathematical Models and Computer Simulations, 6:4 (2014), 351–363

[19] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, Moskva, 1989, 616 pp.

[20] A. V. Nikitina, A. A. Semenyakina, A. E. Chistyakov, “Parallelnaya realizatsiya zadachi diffuzii-konvektsii na osnove skhem povyshennogo poryadka tochnosti”, Vestnik kompyuternykh i informatsionnykh tekhnologii, 2016, no. 7(146), 3–7

[21] A. A. Semenyakina, A. V. Nikitina, A. E. Chistyakov, A. I. Sukhinov, “Kompleks modelei, yavnykh regulyarizovannykh skhem povyshennogo poryadka tochnosti i programm dlya predskazatelnogo modelirovaniya posledstvii avariinogo razliva nefteproduktov”, Parallelnye vychislitelnye tekhnologii, PaVT’2016 (Arkhangelsk, 28 marta – 1 aprelya 2016 g), Izdatelskii tsentr YuUrGU, Chelyabinsk, 2016, 308–319

[22] A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “Parallelnaya realizatsiya zadach transporta veschestv i vosstanovleniya donnoi poverkhnosti na osnove skhem povyshennogo poryadka tochnosti”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 16 (2015), 256–267

[23] A. N. Konovalov, “K teorii poperemenno-treugolnogo iteratsionnogo metoda”, Sibirskii matematicheskii zhurnal, 43:3 (2002), 552–572

[24] O. M. Belotserkovskii, Turbulentnost: novye podkhody, Nauka, Moskva, 2003, 286 pp.

[25] A. I. Sukhinov, A. E. Chistyakov, “Adaptivnyi modifitsirovannyi poperemenno-treugolnyi iteratsionnyi metod dlya resheniya setochnykh uravnenii s nesamosopryazhennym operatorom”, Matematicheskoe modelirovanie, 24:1 (2012), 3–20

[26] A. V. Nikitina, A. I. Sukhinov, G. A. Ugolnitskii, A. B. Usov, A. E. Chistyakov, M. V. Puchkin, I. S. Semenov, “Optimalnoe upravlenie ustoichivym razvitiem pri biologicheskoi reabilitatsii Azovskogo morya”, Matematicheskoe modelirovanie, 28:7 (2016), 96–106

[27] A. V. Nikitina, M. V. Puchkin, I. S. Semenov, A. I. Sukhinov, G. A. Ugolnitskii, A. B. Usov, A. E. Chistyakov, “Differentsialno-igrovaya model predotvrascheniya zamorov v melkovodnykh vodoemakh”, Upravlenie bolshimi sistemami, 2015, no. 55, 343–361

[28] Yu. Tyutyunov, I. Senina, R. Arditi, “Clustering due to Acceleration in the Response to Population Gradient: a Simple Self-organization Model”, The American Naturalist, 164 (2004), 722–735 | DOI

[29] V. Volterra, “Variations and Fluctuations of the Number of Individuals in Animal Species Living Together”, Rapp. P., V. Reun. Cons. Int. Explor. Mer, 3 (1928), 3–51

[30] E. V. Yakushev, G. E. Mikhailovsky, “Mathematical Modeling of the Influence of Marine Biota on the Carbon Dioxide Ocean-atmosphere Exchange in High Latitudes”, Air-Water Gas Transfer, Sel. Papers: Third Int. Symp., Heidelberg University, 1995, 37–48

[31] I. B. Petrov, “Application of Grid-characteristic Method for Numerical Solution of Deformable Solid Mechanics Dynamical Problems”, Computational Mathematics and Information Technologies, 1:1 (2017), 1–20

[32] A. I. Sukhinov, V. V. Sidoryakina, A. A. Sukhinov, “Sufficient Convergence Conditions for Positive Solutions of Linearized Two-dimensional Sediment Transport Problem”, Computational Mathematics and Information Technologies, 1:1 (2017), 21–35

[33] A. V. Nikitina, A. A. Semenyakina, “Mathematical Modeling of Eutrophication Processes in Azov Sea on Supercomputers”, Computational Mathematics and Information Technologies, 1:1 (2017), 82–101

[34] A. E. Chistyakov, E. A. Protsenko, E. F. Timofeeva, “Mathematical Modeling of Oscillatory Processes with a Free Boundary”, Computational Mathematics and Information Technologies, 1:1 (2017), 102–112