@article{VYURV_2018_7_3_a0,
author = {Z. Kh. Khalil and S. M. Abdullaev},
title = {Diagnosis of landscapes of the province of {Al-Diwaniyah} {(Iraq)} by using of {Landsat-8} multispectral images},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--18},
year = {2018},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a0/}
}
TY - JOUR AU - Z. Kh. Khalil AU - S. M. Abdullaev TI - Diagnosis of landscapes of the province of Al-Diwaniyah (Iraq) by using of Landsat-8 multispectral images JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2018 SP - 5 EP - 18 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a0/ LA - ru ID - VYURV_2018_7_3_a0 ER -
%0 Journal Article %A Z. Kh. Khalil %A S. M. Abdullaev %T Diagnosis of landscapes of the province of Al-Diwaniyah (Iraq) by using of Landsat-8 multispectral images %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2018 %P 5-18 %V 7 %N 3 %U http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a0/ %G ru %F VYURV_2018_7_3_a0
Z. Kh. Khalil; S. M. Abdullaev. Diagnosis of landscapes of the province of Al-Diwaniyah (Iraq) by using of Landsat-8 multispectral images. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/VYURV_2018_7_3_a0/
[1] A. D. Kleshchenko, O. V. Savitskaya, “Assessment of Spatio-temporal Distribution of Grain Yields and Standardized Precipitation Index by Satellite and Ground-Based Information”, Proceedings of Voeikov Geophysical Observatory, 2014, no. 571
[2] Yu. E. Galakhova, G. V. Menzhulin, “Experience of Yield Statistical Predictive Modeling Based on Satellite Information”, Proceedings of Voeikov Geophysical Observatory, 2015, no. 578, 101–125
[3] E. A. Loupian, S. A. Bartalev, Yu. S. Krasheninnikova, “Observing an Abnormally Early Development of Crops in the Southern Regions of Russia in Spring 2016 Using Remote Monitoring Data”, Current Problems in Remote Sensing of the Earth from Space, 13:2 (2016), 240–243 | DOI
[4] I. Yu. Savin, X. Zhang, E. A. Shishkonakova, et.al., “Map of Winter Crops of the Season 2017 Placed on the Service VEGA: Results of Selective Quality Control”, Current Problems in Remote Sensing of the Earth from Space, 14:4 (2017), 125–131 | DOI
[5] A. S. Muhaimeed, M. Al-Hedny Suhad, “Evaluation of Long-Term Vegetation Trends for Northeastern of Iraq: Mosul, Kirkuk and Salah al-Din”, IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 5:2 (2013), 67–76
[6] I. J. Muhsin, “Change Detection of Remotely Sensed Image Using NDVI Subtractive and Classification Methods”, Iraqi Journal of Physics, 14:29 (2016), 125–137
[7] Agriculture forestry and fishing, } {\tt https://www.britannica.com/place/Iraq/Agriculture-forestry-and-fishing
[8] Landsat 8 (L8) Data Users Handbook Version 2.0 March 29, 2016, Department of the Interior U.S. Geological Survey EROS Sioux Falls, South Dakota, 98 p. } {\tt https://landsat.usgs.gov/landsat-8-data-users-handbook
[9] J. A. Barsi, K. Lee, G. Kvaran, et al., “The Spectral Response of the Landsat-8 Operational Land Imager”, Remote Sens, 2014, no. 6, 10232–10251 | DOI
[10] J. B. Campbell, R. H. Wynne, Introduction to remote sensing, 5th ed., The Guilford Press, NewmYork, 2011, 718 pp.
[11] A. Tilahun, B. Teferie., “Accuracy Assessment of Land Use Land Cover Classification using Google Earth”, American J. of Environmental Protection, 4:4 (2015), 193–198 | DOI
[12] R. G. Congalton, “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data”, Remote Sensing of Environment, 37:1 (1991), 35–46 | DOI
[13] K. Yadav, R. G. Congalton, “Issues with Large Area Thematic Accuracy Assessment for Mapping Cropland Extent: A Tale of Three Continents”, Remote Sens, 10:1 (2018), 1–27 | DOI
[14] J. L. Huntington, K. C. Hegewisch, B. Daudert, et al., “CLIMATE ENGINE: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understandin”, Bulletin Am. Met Soc, 98:11 (2017), 2397–2410 | DOI