Dynamics of stability regions of discrete models of neural networks of small world type when the numeric characteristics of the network graph change
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 2, pp. 22-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article gives the description of the discrete models of neural networks with constraints of the type of small world with probability redirecting connections within the network p varying from 0 to 1. At the value p = 0 we obtain a model of a regular neural network. A regular neural network is a ring neural network, in which each neuron interacts with several neighbors along the ring. At p = 1, we obtain a model, the neurons of which are randomly connected to other neurons of the network without formation of isolated neurons. The neural networks are widely used in modeling various neural structures in living organisms, for example, mammalian brain hypocampus. The paper studies the dynamics of the stability regions of the neural networks in case of changes in the probability of redirecting links, clustering coefficient and the length of the shortest path in the average for the graph of neural network. In a series of numerical experiments, the regions of stability of the studied neural network models for various network parameters were constructed, and the conclusion about increasing the stability region while reducing the length of the shortest path on average and the clustering coefficient of the network graph was drawn.
Keywords: Watts-Strogatz discrete models, small world, stability.
@article{VYURV_2018_7_2_a1,
     author = {S. A. Ivanov and M. M. Kipnis},
     title = {Dynamics of stability regions of discrete models of neural networks of small world type when the numeric characteristics of the network graph change},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {22--31},
     year = {2018},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_2_a1/}
}
TY  - JOUR
AU  - S. A. Ivanov
AU  - M. M. Kipnis
TI  - Dynamics of stability regions of discrete models of neural networks of small world type when the numeric characteristics of the network graph change
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 22
EP  - 31
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_2_a1/
LA  - ru
ID  - VYURV_2018_7_2_a1
ER  - 
%0 Journal Article
%A S. A. Ivanov
%A M. M. Kipnis
%T Dynamics of stability regions of discrete models of neural networks of small world type when the numeric characteristics of the network graph change
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 22-31
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_2_a1/
%G ru
%F VYURV_2018_7_2_a1
S. A. Ivanov; M. M. Kipnis. Dynamics of stability regions of discrete models of neural networks of small world type when the numeric characteristics of the network graph change. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 2, pp. 22-31. http://geodesic.mathdoc.fr/item/VYURV_2018_7_2_a1/

[1] D. Watts, S. Strogatz, “Collective Dynamics of «Small-World» Networks”, Nature, 393 (1998), 440–442

[2] R. T. Gray, C. K. Fung, P. A. Robinson, “Stability of Small-World Networks of Neural Populations”, Neurocomputing, 72(7-9) (2009), 1565–1574 | DOI

[3] S. Sinha, “Complexity vs Stability in Small-World Networks”, Physica A, 346 (2005), 147–153 | DOI

[4] M. G. Hart, R. J. F. Ypma, R. Romero–Garcia, S. J. Price, J. Suckling, “Graph Theory Analysis of Complex Brain Networks: New Concepts in Brain Maping Aplied to Neurosurgery”, Journal of Neurosurgery, 124:6 (2016), 1665–1678 | DOI

[5] B. M. Jobst, R. Hindriks, H. Laufs, E. Tagliazucchi, G. Hahn, A. Ponce-Alvarez, A. B. A. Stevner, M. L. Kringelbach, G. Deco, “Increased Stability and Breakdown of Brain Effective Connectivity During Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling”, Scientific Reports, 5:7(1) (2017), 1–16 | DOI

[6] A. E. Takesian, T. K. Hensch, “Chapter 1 — Balancing Plasticity/Stability Across Brain Development”, Progress in Brain Research, 207 (2013), 3–34 | DOI

[7] T. I. Netoff, R. Clewley, S. Arno, T. Keck, A. John, “White Epilepsy in Small-World Networks”, The Journal of Neuroscience, 24(37) (2004), 8075–8083 | DOI

[8] M. A. Arbib, P. Érdi, J. Szentágothai, Neural Organization: Structure, Function, and Dynamics, MA: MIT Press, Cambridge, 1998, 420 pp.

[9] M. Arbib, The Handbook of Brain Theory and Neural Networks, MA:MIT Press, Cambridge, 2003, 1308 pp.

[10] S. A. Ivanov, “Calculation of Stability Domains of Discrete Models of Big Size Small World Networks. [Bulletin of the South Ural State University”, Series: Computational Mathematics and Software Engineering, 5:3 (2016), 69–75 | DOI

[11] S. A. Ivanov, M. M. Kipnis, “Stability Analysis Discrete-time Neural Networks with Delayed interactions: Torus, Ring, Grid, Line”, International Journal of Pure and Aplied Math, 78(5) (2012), 691–709

[12] S. A. Ivanov, M. M. Kipnis, R. Medina, “On the Stability of the Cartesian Product of a Neural Ring and an Arbitrary Neural Network”, Advances in Difference Equations, 2014 (2014), 1–7 | DOI

[13] M. M. Kipnis, V. V. Malygina, “The Stability Cone for a Matrix Delay Difference Equation”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1–15 | DOI

[14] S. A. Ivanov, M. M. Kipnis, V. V. Malygina, “The Stability Cone for a Difference Matrix Equation with Two Delays”, ISRN Aplied Math, 2011 (2011), 1–19 | DOI

[15] I. I. Blees, S. A. Ivanov, “Certificate of Rospatent on official registration of computer programs “Small world graph generator””, number 2016662698 from 21.11.2016, right holder: FSBEIHE SUSU (NRU)

[16] S. Ivanov, M. Kipnis, “On the Stability of a Neural Network with Links Based on the Watts-Strogatz Model”, International Journal of Pure and Applied Mathematics, 105:3 (2015), 431–438 | DOI