Guaranteed parameter estimation for discrete-time chaotic systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 25-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem of parameter estimation from noisy measurements of discrete-time chaotic systems. The guaranteed approach assumes that the uncertainty is represented by intervals of possible values of the unknown variables (state, model parameter and measurement errors). The developed algorithm is based on interval analysis and can be used in the forward and backward time direction. The result of the guaranteed estimation is interval estimates that contain the true values of the unknown variables. The proposed algorithm can be usefully associated with common estimation methods developed in the field of optimization approach and estimation in real time. If the estimation problem is solved by the least squares method or its modifications, the guaranteed algorithm can be used to specify the set of possible values of the unknown variables. It decreases the number of local minima of the cost function. Computed interval estimates may also be used to verify the results obtained using the modifications of the Kalman filter for nonlinear systems. In the practical section, the dependence of the results on the number of available measurements and noise level is examined.
Keywords: chaotic map, parameter estimation, guaranteed approach, interval estimate, interval analysis
Mots-clés : information set.
@article{VYURV_2018_7_1_a2,
     author = {A. S. Sheludko},
     title = {Guaranteed parameter estimation for discrete-time chaotic systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {25--39},
     year = {2018},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a2/}
}
TY  - JOUR
AU  - A. S. Sheludko
TI  - Guaranteed parameter estimation for discrete-time chaotic systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 25
EP  - 39
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a2/
LA  - ru
ID  - VYURV_2018_7_1_a2
ER  - 
%0 Journal Article
%A A. S. Sheludko
%T Guaranteed parameter estimation for discrete-time chaotic systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 25-39
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a2/
%G ru
%F VYURV_2018_7_1_a2
A. S. Sheludko. Guaranteed parameter estimation for discrete-time chaotic systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a2/

[1] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989, 336 pp.

[2] J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, 2003, 507 pp.

[3] C. H. Skiadas, C. Skiadas, Handbook of Applications of Chaos Theory, CRC Press, 2016, 934 pp.

[4] J. M. Thompson, “Chaos, Fractals and Their Applications”, International Journal of Bifurcation and Chaos, 26:13 (2016) | DOI

[5] O. L. Anosov, O. Ya. Butkovskii, Yu. A. Kravtsov, “Reconstruction of Dynamical Systems from Chaotic Time Series: Short Review”, Izvestiya VUZ. Applied Nonlinear Dynamics, 8:1 (2000), 29–48

[6] B. P. Bezruchko, D. A. Smirnov, “Contemporary Problems in Modeling from Time Series”, Izvestiya of Saratov University. New Series. Series Physics, 6:1 (2006), 1–2

[7] L. A. Aguirre L.A., C. Letellier, “Modeling Nonlinear Dynamics and Chaos: A Review”, Mathematical Problems in Engineering, 2009, Article ID 238960 | DOI

[8] H. U. Voss, J. Timmer, J. Kurths, “Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements”, International Journal of Bifurcation and Chaos, 14:6 (2004), 1905–1933 | DOI

[9] A. Gotmare, S. S. Bhattacharjee, R. Patidar, N. V. George, “Swarm and Evolutionary Computing Algorithms for System Identification and Filter Design: A Comprehensive Review”, Swarm and Evolutionary Computation, 32 (2017), 68–84 | DOI

[10] D. A. Smirnov, V. S. Vlaskin, V. I. Ponomarenko, “Estimation of Parameters in One-Dimensional Maps from Noisy Chaotic Time Series”, Physics Letters A, 336 (2005), 448–458 | DOI

[11] S. Jafari, J. C. Sprott, V. T. Pham, et al., “et al. A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints”, International Journal of Bifurcation and Chaos, 24:10 (2014) | DOI

[12] L. Liu, J. Hu, H. Li, et al., “Parameter Estimation of a Class One-Dimensional Discrete Chaotic System”, Discrete Dynamics in Nature and Society, 2011, Article ID 696017 | DOI

[13] T. Nakamura, Y. Hirata, K. Judd, et al., “et al. Improved Parameter Estimation from Noisy Time Series for Nonlinear Dynamical Systems”, International Journal of Bifurcation and Chaos, 17:5 (2007), 1741–1752 | DOI

[14] D. M. Walker, “Parameter Estimation Using Kalman Filters with Constraints”, International Journal of Bifurcation and Chaos, 16:4 (2006), 1067–1078 | DOI

[15] K. Judd, “Fifty Years of Forecasting Chaos and the Shadow of Imperfect Models”, Nonlinear Theory and Its Applications, 7:2 (2016), 234–249 | DOI

[16] H. Leung, Z. Zhu, Z. Ding, “An Aperiodic Phenomenon of the Extended Kalman Filter in Filtering Noisy Chaotic Signals”, IEEE Transactions on Signal Processing, 48:6 (2000), 1807–1810 | DOI

[17] J. Feng, H. Fan, C. K. Tse, “Convergence Analysis of the Unscented Kalman Filter for Filtering Noisy Chaotic Signals”, Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS) (New Orleans, USA, May 27–30, 2007), 2007, 1681–1684 | DOI

[18] A. B. Kurzhanski, V. D. Furasov, “Identification of Nonlinear Processes: Guaranteed Estimates”, Automation and Remote Control, 60:6 (1999), 814–828

[19] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis, Springer, 2001, 379 pp. | DOI

[20] T. Raissi, N. Ramdani, Y. Candau, “Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations”, Automatica, 40:10 (2004), 1771–1777 | DOI

[21] F. Abdallah, A. Gning, P. Bonnifait, “Box Particle Filtering for Nonlinear State Estimation Using Interval Analysis”, Automatica, 44:3 (2008), 807–815 | DOI

[22] S. I. Kumkov, Y. V. Mikushina, “Interval Approach to Identification of Catalytic Process Parameters”, Reliable Computing, 19:2 (2013), 197–214

[23] R. Paulen, M. Villanueva, M. Fikar, B. Chachuat, “Guaranteed Parameter Estimation in Nonlinear Dynamic Systems Using Improved Bounding Techniques”, Proceedings of the 2013 European Control Conference (ECC) (Zurich, Switzerland, July 17–19, 2013), 2013, 4514–4519

[24] F. Blanchini, S. Miani, Set-Theoretic Methods in Control, Birkhauser, 2015, 630 pp. | DOI

[25] P. V. Prostiakov, “Fractal Structure for the Guaranteed Observation Problem. An Example”, Applied Mathematics Letters, 14:4 (2001), 507–511 | DOI

[26] S. P. Shary, “A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity”, Reliable Computing, 8:5 (2002), 321–418 | DOI

[27] A. S. Sheludko, V. I. Shiryaev, “The Algorithm of Guaranteed Parameter Estimation for One-Dimensional Chaotic Map”, Information Technologies, 21:1 (2015), 30–34

[28] A. S. Sheludko, V. I. Shiryaev, “Guaranteed State and Parameter Estimation for One-Dimensional Chaotic System”, Proceedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, Russia, May 19–20, 2016), 2016 | DOI