Theta-functions in mathematical model of noise quantization
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 16-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents a new formula for two-dimensional density function probability of noise quantization, which allows us to write it with the help of mathematical expression, which consists of only theta-functions Jacobi. The method of obtaining this formula is given. The derivation is based on the fact that at a suitable change of variables some members of the double row are destroyed. It shows the principle of producing all of the formulas of this family. This principle is based on properties of symmetry theta-function. The symmetry of theta-functions allows us to express one theta-function by another theta-function and obtain other formulas consisting only of theta-functions Jacobi. This family of formulas allows us to obtain expressions for the organization of model experiments, supported by basic mathematical packages. They enable us to receive numerical characteristics of random processes such as the functions of parameters that give rise to their Gaussian random processes in an analytical form. Their use increases the rate of convergence of simulation results. These formulas enable us carry out synthesis of the desired expression in an analytic form for functional transformations of random vectors and processes in signal process.
Keywords: distribution density, theta-functions Jacobi.
Mots-clés : noise quantization
@article{VYURV_2018_7_1_a1,
     author = {Yu. S. Vasilyev and V. V. Zavolokin},
     title = {Theta-functions in mathematical model of noise quantization},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {16--24},
     year = {2018},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/}
}
TY  - JOUR
AU  - Yu. S. Vasilyev
AU  - V. V. Zavolokin
TI  - Theta-functions in mathematical model of noise quantization
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 16
EP  - 24
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/
LA  - ru
ID  - VYURV_2018_7_1_a1
ER  - 
%0 Journal Article
%A Yu. S. Vasilyev
%A V. V. Zavolokin
%T Theta-functions in mathematical model of noise quantization
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 16-24
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/
%G ru
%F VYURV_2018_7_1_a1
Yu. S. Vasilyev; V. V. Zavolokin. Theta-functions in mathematical model of noise quantization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 16-24. http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/

[1] B. M. Balyasnikov, M. C. Vorona, V. V. Zavolokin, A. Y. Korshunov, M. D. Maksimenko, N. M. Odinochenko, “A Mathematical Model of the Quantization of the Signals Reflected from Expended Spatial Interference”, Proceedings of the Mozhaisky Military Space Academy, 633:2 (2011), 131–138

[2] V. I. Tihonov, Statistical Radio Engineering, Sovetskoe Radio, Moscow, 1982, 642 pp.

[3] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series–55, 1964, 832 pp.

[4] G. Korn, T. Korn, Mathematical Handbook. For Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Revive, Second, Enlargend and Revised Edition, McGraw–Hill Book Co., New York, San Francisco, Toronto, London, Sydney, 1968, 832 pp.

[5] D. F. Lawden, Elliptic Function and Application, Springer Verlag, New York, 1989, 336 pp. | DOI

[6] H. Bateman, A. Erdelyi, Higher Transcendental Functions: Elliptic and Automorphic Functions. Lame and Mathieu Functions, v. 3, McGraw–Hill Book Co., New York, 1955, 300 pp.