Mots-clés : noise quantization
@article{VYURV_2018_7_1_a1,
author = {Yu. S. Vasilyev and V. V. Zavolokin},
title = {Theta-functions in mathematical model of noise quantization},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {16--24},
year = {2018},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/}
}
TY - JOUR AU - Yu. S. Vasilyev AU - V. V. Zavolokin TI - Theta-functions in mathematical model of noise quantization JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2018 SP - 16 EP - 24 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/ LA - ru ID - VYURV_2018_7_1_a1 ER -
%0 Journal Article %A Yu. S. Vasilyev %A V. V. Zavolokin %T Theta-functions in mathematical model of noise quantization %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2018 %P 16-24 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/ %G ru %F VYURV_2018_7_1_a1
Yu. S. Vasilyev; V. V. Zavolokin. Theta-functions in mathematical model of noise quantization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 16-24. http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a1/
[1] B. M. Balyasnikov, M. C. Vorona, V. V. Zavolokin, A. Y. Korshunov, M. D. Maksimenko, N. M. Odinochenko, “A Mathematical Model of the Quantization of the Signals Reflected from Expended Spatial Interference”, Proceedings of the Mozhaisky Military Space Academy, 633:2 (2011), 131–138
[2] V. I. Tihonov, Statistical Radio Engineering, Sovetskoe Radio, Moscow, 1982, 642 pp.
[3] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series–55, 1964, 832 pp.
[4] G. Korn, T. Korn, Mathematical Handbook. For Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Revive, Second, Enlargend and Revised Edition, McGraw–Hill Book Co., New York, San Francisco, Toronto, London, Sydney, 1968, 832 pp.
[5] D. F. Lawden, Elliptic Function and Application, Springer Verlag, New York, 1989, 336 pp. | DOI
[6] H. Bateman, A. Erdelyi, Higher Transcendental Functions: Elliptic and Automorphic Functions. Lame and Mathieu Functions, v. 3, McGraw–Hill Book Co., New York, 1955, 300 pp.