Mathematical modelling of stationary state and oscillatory regimes in oregonator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Oscillatory systems are widely used in various areas of research (chemical, biological, environmental oscillators). The article presents the five-stage Field–Noyes–Köros model of the Belousov–Zhabotinsky reaction and the corresponding mathematical model of the oregonator. A system of equations for the stationary states of oregonator is derived. Stationary states of oregonator are calculated depending on the speed of direct reactions for various values of stoichiometric coefficient. Simulation of homogeneous stationary state of the system was conducted according to the experimental data of the authors of the model. The stationary solutions corresponded to the physical meaning of the model. In framework of the system of ordinary differential equations of the kinetics reactive systems oscillatory regimes are calculated. The time for oscillatory regime is determined. The amplitudes of the oscillations are corresponded to the experimental data of the authors of the model. The instability of the stationary state of the oregonator to perturbations is investigated.
Mots-clés : Belousov–Zhabotinsky’s reaction
Keywords: oregonator, steady states, oscillatory regimes.
@article{VYURV_2018_7_1_a0,
     author = {L. A. Prokudina and S. U. Turlakova},
     title = {Mathematical modelling of stationary state and oscillatory regimes in oregonator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--15},
     year = {2018},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/}
}
TY  - JOUR
AU  - L. A. Prokudina
AU  - S. U. Turlakova
TI  - Mathematical modelling of stationary state and oscillatory regimes in oregonator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2018
SP  - 5
EP  - 15
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/
LA  - ru
ID  - VYURV_2018_7_1_a0
ER  - 
%0 Journal Article
%A L. A. Prokudina
%A S. U. Turlakova
%T Mathematical modelling of stationary state and oscillatory regimes in oregonator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2018
%P 5-15
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/
%G ru
%F VYURV_2018_7_1_a0
L. A. Prokudina; S. U. Turlakova. Mathematical modelling of stationary state and oscillatory regimes in oregonator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/

[1] B. P. Belousov, “Bath Reaction and Its Mechanism”, The Collection of Abstracts on Radiation Medicine, Medgiz Publ., Moscow, 1959, 145–148

[2] B. V. Volter, I. E. Salnikov, Stability of Operation Modes of Chemical Reactorse, Khimiya, Moscow, 1972

[3] V. Volterra, Mathematical Theory of the Struggle for Existence, Russian Translation, Nauka, Moscow, 1976, 287 pp.

[4] A. M. Zhabotinsky, Concentration Auto-Oscillations, Nauka, Moscow, 1974, 179 pp.

[5] A. M. Zhabotinsky, “Periodic Liquid Phase Reactions”, Proceedings of Academy of Sciences USSR, 157 (1964), 392–395

[6] A. M. Zhabotinsky, “Periodic Process of the Oxidation of Malonic Acid in Solution (Study of Kinetics of Belousov’s Reaction)”, Biofizika, 9 (1964), 306–311

[7] L. P. Kholpanov, L. A. Prokudina, “Mathematical Modeling of Unstable Mass Transfer Complicated by Chemical Reactions”, Theoretical Foundations of Chemical Engineering, 39:1 (2005), 39–49

[8] L. P. Kholpanov, L. A. Prokudina, “Numerical Method for Solving an Inverse Problem for Nonlinear Parabolic Equation with Unknown Initial Conditions”, Bulletin of South Ural State University. Series: Computational Mathematics and Software Engineering, 5:2 (2016), 43–58 | DOI

[9] R. J. Field, E. Koros, R. Noyes, “Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System”, Journal of the American Chemical Society, 94:25 (1972), 8649–8664 | DOI

[10] R. J. Field, R.M. Noyes, “Oscillations in Chemical Systems. IV. Limit Cycle Behavior in a Model of a Real Chemical Reaction”, Journal of Chemical Physics, 60:5 (1974), 1877–1884 | DOI

[11] D. Edelson, R. J. Field, R.M. Noyes, “Mechanistic Details of the Belousov-Zhabotinskii Reaction”, International Journal of Chemical Kinetics, 7 (1975), 417–432 | DOI

[12] A. J. Lotka, “Contribution to the Theory of Periodic Reactions”, Journal of the Chemical Society, 1909, no. 14(3), 271–274 | DOI

[13] A. J. Lotka, “Undamped Oscillations Derived from the Law of Mass Action”, Journal of the American Chemical Society, 1920, no. 42(8), 1595–1599 | DOI

[14] L. A. Prokudina, L. P. Kholpanov, “Nonlinear Development of Perturbations of DiffusionComplicated Autocatalytic Reaction”, Theoretical Foundations of Chemical Engineering, 38(6) (2004), 636–643 | DOI