Keywords: oregonator, steady states, oscillatory regimes.
@article{VYURV_2018_7_1_a0,
author = {L. A. Prokudina and S. U. Turlakova},
title = {Mathematical modelling of stationary state and oscillatory regimes in oregonator},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {5--15},
year = {2018},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/}
}
TY - JOUR AU - L. A. Prokudina AU - S. U. Turlakova TI - Mathematical modelling of stationary state and oscillatory regimes in oregonator JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2018 SP - 5 EP - 15 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/ LA - ru ID - VYURV_2018_7_1_a0 ER -
%0 Journal Article %A L. A. Prokudina %A S. U. Turlakova %T Mathematical modelling of stationary state and oscillatory regimes in oregonator %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2018 %P 5-15 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/ %G ru %F VYURV_2018_7_1_a0
L. A. Prokudina; S. U. Turlakova. Mathematical modelling of stationary state and oscillatory regimes in oregonator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 7 (2018) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURV_2018_7_1_a0/
[1] B. P. Belousov, “Bath Reaction and Its Mechanism”, The Collection of Abstracts on Radiation Medicine, Medgiz Publ., Moscow, 1959, 145–148
[2] B. V. Volter, I. E. Salnikov, Stability of Operation Modes of Chemical Reactorse, Khimiya, Moscow, 1972
[3] V. Volterra, Mathematical Theory of the Struggle for Existence, Russian Translation, Nauka, Moscow, 1976, 287 pp.
[4] A. M. Zhabotinsky, Concentration Auto-Oscillations, Nauka, Moscow, 1974, 179 pp.
[5] A. M. Zhabotinsky, “Periodic Liquid Phase Reactions”, Proceedings of Academy of Sciences USSR, 157 (1964), 392–395
[6] A. M. Zhabotinsky, “Periodic Process of the Oxidation of Malonic Acid in Solution (Study of Kinetics of Belousov’s Reaction)”, Biofizika, 9 (1964), 306–311
[7] L. P. Kholpanov, L. A. Prokudina, “Mathematical Modeling of Unstable Mass Transfer Complicated by Chemical Reactions”, Theoretical Foundations of Chemical Engineering, 39:1 (2005), 39–49
[8] L. P. Kholpanov, L. A. Prokudina, “Numerical Method for Solving an Inverse Problem for Nonlinear Parabolic Equation with Unknown Initial Conditions”, Bulletin of South Ural State University. Series: Computational Mathematics and Software Engineering, 5:2 (2016), 43–58 | DOI
[9] R. J. Field, E. Koros, R. Noyes, “Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System”, Journal of the American Chemical Society, 94:25 (1972), 8649–8664 | DOI
[10] R. J. Field, R.M. Noyes, “Oscillations in Chemical Systems. IV. Limit Cycle Behavior in a Model of a Real Chemical Reaction”, Journal of Chemical Physics, 60:5 (1974), 1877–1884 | DOI
[11] D. Edelson, R. J. Field, R.M. Noyes, “Mechanistic Details of the Belousov-Zhabotinskii Reaction”, International Journal of Chemical Kinetics, 7 (1975), 417–432 | DOI
[12] A. J. Lotka, “Contribution to the Theory of Periodic Reactions”, Journal of the Chemical Society, 1909, no. 14(3), 271–274 | DOI
[13] A. J. Lotka, “Undamped Oscillations Derived from the Law of Mass Action”, Journal of the American Chemical Society, 1920, no. 42(8), 1595–1599 | DOI
[14] L. A. Prokudina, L. P. Kholpanov, “Nonlinear Development of Perturbations of DiffusionComplicated Autocatalytic Reaction”, Theoretical Foundations of Chemical Engineering, 38(6) (2004), 636–643 | DOI