Hybrid computing clusters to study protein structure, function and regulation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 4, pp. 74-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Studying protein structure, function and regulation using bioinformatics and molecular modeling is a complex task that requires a combination of various methods and ways to implement them. The process can be seen as a pipeline of sequential steps executed by various programs which benefit from customized hardware. Hybrid computing clusters characterized by a significant performance and a variety of hardware capabilities are necessary to optimally execute each individual step of the complex solution. It can be specifically noted that GPU accelerators open new opportunities for efficient solution of resource-intensive tasks of bioinformatics and molecular modeling.
Keywords: Hybrid computing clusters, bioinformatics, molecular modeling, computational pipeline, sequential steps, co-design, GPU accelerators.
@article{VYURV_2017_6_4_a5,
     author = {D. A. Suplatov and N. N. Popova and K. E. Kopylov and M. V. Shegay and Vl. V. Voevodin and V. K. \v{S}vedas},
     title = {Hybrid computing clusters to study protein structure, function and regulation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {74--90},
     year = {2017},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_4_a5/}
}
TY  - JOUR
AU  - D. A. Suplatov
AU  - N. N. Popova
AU  - K. E. Kopylov
AU  - M. V. Shegay
AU  - Vl. V. Voevodin
AU  - V. K. Švedas
TI  - Hybrid computing clusters to study protein structure, function and regulation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2017
SP  - 74
EP  - 90
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2017_6_4_a5/
LA  - ru
ID  - VYURV_2017_6_4_a5
ER  - 
%0 Journal Article
%A D. A. Suplatov
%A N. N. Popova
%A K. E. Kopylov
%A M. V. Shegay
%A Vl. V. Voevodin
%A V. K. Švedas
%T Hybrid computing clusters to study protein structure, function and regulation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2017
%P 74-90
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2017_6_4_a5/
%G ru
%F VYURV_2017_6_4_a5
D. A. Suplatov; N. N. Popova; K. E. Kopylov; M. V. Shegay; Vl. V. Voevodin; V. K. Švedas. Hybrid computing clusters to study protein structure, function and regulation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 4, pp. 74-90. http://geodesic.mathdoc.fr/item/VYURV_2017_6_4_a5/

[1] D. Suplatov, V. Švedas, “Study of Functional and Allosteric sites in Protein Superfamilies”, Acta Naturae, 7:4 (2015), 34–45

[2] E. Zuckerkandl, L. Pauling, “Evolutionary Divergence and Convergence in Proteins”, Evolving Genes and Proteins, 97 (1965), 97–166

[3] M. Fourment, M. R. Gillings, “A Comparison of Common Programming Languages Used in Bioinformatics”, BMC bioinformatics, 9:1 (2008), 82 | DOI

[4] R. Kourist, H. Jochens, S. Bartsch, R. Kuipers, S. K. Padhi, M. Gall, B. Dominique, J. Henk-Jan, U. T. Bornscheuer, “The {$\alpha$}/{$\beta$}-hydrolase Fold 3DM Database (ABHDB) as a Tool for Protein Engineering”, ChemBioChem, 11:12 (2010), 1635–1643 | DOI

[5] Programmnoe obespechenie BioProdict } {\tt https://www.bio-prodict.nl/

[6] P. D. Vouzis, N. V. Sahinidis, “GPU-BLAST: Using Graphics Processors to Accelerate Protein Sequence Alignment”, Bioinformatics, 27:2 (2011), 182–188 | DOI

[7] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J Lipman, “Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs”, Nucleic Acids Research, 25:17 (1997), 3389–3402 | DOI

[8] D. Suplatov, D. Shalaeva, E. Kirilin, V. Arzhanik, V. Švedas, “Bioinformatic Analysis of Protein Families for Identification of Variable Amino Acid Residues Responsible for Functional Diversity”, Journal of Biomolecular Structure and Dynamics, 32:1 (2014), 75–87 | DOI

[9] D. Suplatov, E. Kirilin, V. Takhaveev, V. Švedas, “Zebra: Web-server for Bioinformatic Analysis of Diverse Protein Families”, Journal of Biomolecular Structure and Dynamics, 32:11 (2014), 1752–1758 | DOI

[10] D. Suplatov, E. Kirilin, M. Arbatsky, V. Takhaveev, V. Švedas, “PocketZebra: a Webserver for Automated Selection and Classification of Subfamily-specific Binding Sites by Bioinformatic Analysis of Diverse Protein Families”, Nucleic Acids Research, 42:W1 (2014), W344–W349 | DOI

[11] D. Suplatov, E. Kirilin, V. Švedas, “Bioinformatic Analysis of Protein Families to Select Function-related Variable Positions”, Understanding Enzymes: Function, Design, Engineering and Analysis, ed. Allan Svendsen, Pan Stanford Publishing, 2016, 351–385

[12] D. Suplatov, N. Popova, S. Zhumatiy, V. Voevodin, V. Švedas, “Parallel Workflow Manager for Non-parallel Bioinformatic Applications to Solve Large-scale Biological Problems on a Supercomputer”, Journal of Bioinformatics and Computational Biology, 14:2 (2016), 1641008 | DOI

[13] S. Le Grand, A. W. Götz, R. C. Walker, “SPFP: Speed Without Compromise — A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations”, Computer Physics Communications, 184:2 (2013), 374–380 | DOI

[14] R. Salomon-Ferrer, A. W. Goetz, D. Poole, S. Le Grand, R. C. Walker, “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald”, Journal of Chemical Theory and Computation, 9:9 (2013), 3878–3888 | DOI

[15] A. W. Goetz, M. J. Williamson, D. Poole, S. Le Grand, R. C. Walker, “Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born”, Journal of Chemical Theory and Computation, 8:5 (2012), 1542–1555 | DOI

[16] E. Y. Bezsudnova, T. N. Stekhanova, D. A. Suplatov, A. V. Mardanov, N. V. Ravin, V.O. Popov, “Experimental and Computational Studies on the Unusual Substrate Specificity of Branched-chain Amino Acid Aminotransferase from Thermoproteus uzoniensis”, Archives of Biochemistry and Biophysics, 607 (2016), 27–36 | DOI

[17] D. A. Suplatov, V. V. Voevodin, V. K. Svedas, “Robust Enzyme Design: Bioinformatic Tools for Improved Protein Stability”, Biotechnology Journal, 10:3 (2015), 344–355 | DOI

[18] T. Shcherbakova, N. Panin, D. Suplatov, I. Shapovalova, V. Švedas, “The {$\beta$}D484N Mutant of Penicillin Acylase from Escherichia coli is More Resistant to Inactivation by Substrates and Can Effectively Perform Peptide Synthesis in Aqueous Medium”, Journal of Molecular Catalysis B: Enzymatic, 112 (2015), 66–68 | DOI

[19] D. A. Suplatov, N. Panin, E. Kirilin, T. Shcherbakova, P. Kudryavtsev, V. Švedas, “Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions”, PLoS ONE, 9:6 (2014), e100643 | DOI

[20] D. Suplatov, W. Besenmatter, V. Švedas, A. Svendsen, “Bioinformatic Analysis of Alpha/Beta-Hydrolase Fold Enzymes Reveals Subfamily-Specific Positions Responsible for Discrimination of Amidase and Lipase Activities”, Protein Engineering, Design and Selection, 25:11 (2012), 689–697 | DOI

[21] Vl. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, Vad. V Voevodin, “Practice of the “Lomonosov” Supercomputer”, Open Systems, 7 (2012), 36–36

[22] M. S. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, “Graphics Processing Units in Bioinformatics, Computational Biology and Systems Biology”, Briefings in Bioinformatics, 2016, 870–885 | DOI