Automatic generation of fuzzy rules for control of a mobile robot with track chasis based on numerical data
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 3, pp. 60-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the problem of generating a set of fuzzy rules for the Mamdani fuzzy inference system based on numerical data obtained in the learning process of a managed system. The approach proposed inthe article to solve this problem is based on algorithms for clear and fuzzy clustering, such as the mining clusteringalgorithm and the Gustafson–Kessel algorithm. It allows you to significantly simplify the process of forminga set of fuzzy rules and minimize the participation of a person in this process, allowing you to automaticallyselect the number of rules, as well as determine all the necessary parameters for each of them. To implement theproposed approach, two computer programs were written. The first of them collects numeric data when a personmanages a robot. Based on the collected data, this program builds a base of fuzzy rules for controlling mobilerobot on a tracked chassis. This base of fuzzy rules and its computer implementation is further used in the secondprogram for automated control of a mobile robot in the plane by varying the tractive force of each of the tracksdepending on the position of the target to which the robot should approximate a given distance.
Keywords: fuzzy inference system, fuzzy clustering, computer implementation.
@article{VYURV_2017_6_3_a3,
     author = {E. A. Ptashko and V. I. Ukhobotov},
     title = {Automatic generation of fuzzy rules for control of a mobile robot with track chasis based on numerical data},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {60--72},
     year = {2017},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_3_a3/}
}
TY  - JOUR
AU  - E. A. Ptashko
AU  - V. I. Ukhobotov
TI  - Automatic generation of fuzzy rules for control of a mobile robot with track chasis based on numerical data
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2017
SP  - 60
EP  - 72
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2017_6_3_a3/
LA  - ru
ID  - VYURV_2017_6_3_a3
ER  - 
%0 Journal Article
%A E. A. Ptashko
%A V. I. Ukhobotov
%T Automatic generation of fuzzy rules for control of a mobile robot with track chasis based on numerical data
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2017
%P 60-72
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2017_6_3_a3/
%G ru
%F VYURV_2017_6_3_a3
E. A. Ptashko; V. I. Ukhobotov. Automatic generation of fuzzy rules for control of a mobile robot with track chasis based on numerical data. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 3, pp. 60-72. http://geodesic.mathdoc.fr/item/VYURV_2017_6_3_a3/

[1] J. Y. Wong, Theory of Ground Vehicles, 3rd Edition, Wiley-Interscience, 2001, 284 pp.

[2] N. A. Zabavnikov, The Fundamentals of the Theory of Transport Caterpilar Vehicles, Mechanical Engeneering, Moscow, 1975, 448 pp.

[3] A. A. Kolesnikov, Synergetic Theory of Management, Energoatomizdat, Moscow, 1994, 344 pp.

[4] A. A. Scliarov, S. A. Scliarov, “Synergetic Control of Tracked Mobile Robot”, SFU News. Technical Science, 2011, no. 6, 118–125

[5] L. A. Zadeh, The Concept of a Linguistic Variable and its Application to Approximate Reasoning, American Elsevier Publishing Company, New York, 1973, 161 pp.

[6] J. L. Castro, “Fuzzy Logic Controllers are Universal Approximators”, IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics, 25 (1995), 629–635 | DOI

[7] B. Kosko, “Fuzzy Systems as Universal Approximators”, IEEE Transactions on Computers, 43:11 (1994), 1329–1333 | DOI

[8] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis”, IEEE Transactions on Computing, 26 (1977), 1182–1191 | DOI

[9] L. X. Wang, “Fuzzy Systems are Universal Approximators”, Proceedings of IEEE International Conference on Fuzzy Systems (San Diego, CA, USA, March, 8 – March, 12, 1992), IEEE Xplore Press, 1992, 1163–1169 | DOI

[10] V. I. Ukhobotov, Selected Chapters of the Theory of Fuzzy Sets, Publishing of the Chelyabinsk State University, Chelyabinsk, 2011, 245 pp.

[11] V. I. Ukhobotov, “Simulation of a Given Motion of a Five-Link Mechanism”, Bulletin of South Ural State University. Series: Computational Mathematics and Informatics, 2:3 (2013), 104–110

[12] O. Cordón, F. Herrera, P. Villar, “Generating the Knowledge Base of a Fuzzy Rule-Based System by the Genetic Learning of the Data Base”, IEEE Transactions on fuzzy systems, 9:4 (2001), 667–674 | DOI

[13] L. V. Sergeev, Tank Theory, Military Order of Lenin Red Banner Academy of Armored Forces Named After Marshal of the Soviet Union R.Ya. Malinovsky, Moscow, 1973, 496 pp.

[14] J. Hartigan, Clustering Algorithms, Wiley, New York, NY, 1975, 351 pp.

[15] D. E. Gustafson, W. C. Kessel, “Fuzzy Clustering With a Fuzzy Covariance Matrix”, Proceedings IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes (San Diego, CA, USA, January, 10 – January, 12, 1978), IEEE Xplore Press, 1978, 761–766 | DOI

[16] S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”, Journal of Intelligent Fuzzy Systems, 2:3 (1994), 267–278 | DOI