Mots-clés : maximum clique problem
@article{VYURV_2017_6_2_a3,
author = {S. A. Tushev and B. M. Sukhovilov},
title = {Parallel algorithms for effective correspondence problem solution in computer vision},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {49--68},
year = {2017},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_2_a3/}
}
TY - JOUR AU - S. A. Tushev AU - B. M. Sukhovilov TI - Parallel algorithms for effective correspondence problem solution in computer vision JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2017 SP - 49 EP - 68 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2017_6_2_a3/ LA - en ID - VYURV_2017_6_2_a3 ER -
%0 Journal Article %A S. A. Tushev %A B. M. Sukhovilov %T Parallel algorithms for effective correspondence problem solution in computer vision %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2017 %P 49-68 %V 6 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2017_6_2_a3/ %G en %F VYURV_2017_6_2_a3
S. A. Tushev; B. M. Sukhovilov. Parallel algorithms for effective correspondence problem solution in computer vision. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 2, pp. 49-68. http://geodesic.mathdoc.fr/item/VYURV_2017_6_2_a3/
[1] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004
[2] D. Baggio, Mastering OpenCV with Practical Computer Vision Projects, Packt Publishing, 2012
[3] H. Bay, T. Tuytelaars, L. van Gool, “SURF: Speeded Up Robust Features”, Computer Vision and Image Understanding, 110:3 (2008), 346–359 | DOI
[4] D. G. Lowe, “Object recognition from local scale-invariant features”, Proceedings of the Seventh IEEE International Conference on Computer Vision, 2 (1999), 1150–1157 | DOI
[5] C. S. Fraser, “Innovations in automation for vision metrology systems”, Photogrammetric Record, 15:90 (1997), 901–911
[6] B. M. Sukhovilov , E. A. Grigorova, “Development of a Photogrammetric System for Measuring the Spatial Coordinates of Structural Elements of the Frame of a Low-Floor Tram”, Science of SUSU. Materials of the 67th Scientific Conference. Section of Economics, Management and Law, Publishing of the South Ural StateUniversity, Chelyabinsk, 2015, 458–463
[7] S. A. Tushev, B. M. Sukhovilov, “Some Ways to Improve the Performance of Automatic Calibration of Digital Cameras”, Young Researcher: Materials of the 2nd Scientific Exhibition-Conference of Scientific, Technical and Creative Works of Students, Publishing of the South Ural State University, Chelyabinsk, 2015, 434–439
[8] W. Hartmann, M. Havlena, K. Schindler, “Recent developments in large-scale tie-point matching”, ISPRS Journal of Photogrammetry and Remote Sensing. International Society for Photogrammetry and Remote Sensing, 115 (2016), 47–62 | DOI
[9] F. Remondino, “State of the art in high density image matching”, The Photogrammetric Record, 29:146 (2014), 144–166 | DOI
[10] S. Leutenegger, M. Chli, R. Y. Siegwart, BRISK : Binary Robust Invariant Scalable Keypoints | DOI
[11] R. Ortiz, A. Alahi, P. Vandergheynst, “FREAK: Fast retina keypoint”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012., 510–517 | DOI
[12] C. S. Fraser, S. Cronk, “A hybrid measurement approach for close-range photogrammetry.”, ISPRS Journal of Photogrammetry and Remote Sensing. Elsevier B.V, 64:3 (2009), 328–333
[13] C. Leung , B. L. Lovell, “3D Reconstruction through Segmentation of Multi-View Image Sequences”, Proceedings of the 2003 APRS Workshop on Digital Image Computing, 2003, 87–92
[14] F. Qiqiang, L. Guangyun, “Matching of artificial target points based on space intersection”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (2008), 111–114
[15] H. G. Maas, “Complexity analysis for the establishment of image correspondences of dense spatial target fields”, International Archives of Photogrammetry and Remote Sensing, 29 (1992), 102–107
[16] J. Dold, H. G. Maas, “An Application of Epipolar Line Intersection in a Hybrid Close-Range Photogrammetric System”, International Archives of Photogrammetry and Remote Sensing, 30:5 (1994), 65–70
[17] Z. Zhang, “A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry”, Artificial Intelligence, 78:1–2 (1995), 87–119 | DOI
[18] J. T. Arnfred, S. Winkler, “A general framework for image feature matching without geometric constraints”, Pattern Recognition Letters. Elsevier B.V, 73 (2016), 26–32 | DOI
[19] R. Y. Takimoto, “Epipolar geometry estimation, metric reconstruction and error analysis from two images”, IFAC Proceedings Volumes (IFAC PapersOnline), 14:1 (2012), 1739–1744 | DOI
[20] C. Fraser, “Advances in Close-Range Photogrammetry”, Photogrammetric Week 2015, 2015, 257–268
[21] V-STARS - Geodetic Systems, Inc } {\tt https://www.geodetic.com/
[22] Agisoft PhotoScan } {\tt http://www.agisoft.com
[23] H. G. Maas, “Automatic DEM generation by multi-image feature based matching”, International Archives of Photogrammetry and Remote Sensing, 31 (1996), 484–489
[24] B. Bhowmick, “Divide and conquer: A hierarchical approach to large-scale structurefrom-motion”, Computer Vision and Image Understanding. Elsevier Inc, 157 (2017), 190–205 | DOI
[25] D. Forsyth, J. Ponce, Computer Vision: A Modern Approach., Pearson, 2011
[26] B. M. Sukhovilov , E. M. Sartasov, E. A. Grigorova, “Improving the Accuracy of Determining the Position of the Code Marks in the Problems of Constructing Three-Dimensional Models of Object”, Procedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Publishing of the South Ural State University, Chelyabinsk, 2016, 363–366
[27] I. Bomze, M. Budinich, P. Pardalos, M. Pelillo, “The Maximum Clique Problem”, Handbook of Combinatorial Optimization, 1999, 1–74
[28] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, “Bundle Adjustment - A Modern Synthesis”, Vision Algorithms: Theory Practice, 1883 (2000), 298–372 | DOI
[29] S. A. Tushev , B. M. Sukhovilov, “Effective Graph-Based Point Matching Algorithms”, Procedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Publishing of the South Ural StateUniversity, Chelyabinsk, 2016, 464–468 | DOI
[30] OpenCV (Open Source Computer Vision Library) } {\tt http://opencv.org
[31] Eigen: C++ template library for linear algebra } {\tt http://eigen.tuxfamily.org
[32] J. Konc, D. Janezic, “An improved branch and bound algorithm for the maximum clique problem”, MATCH Communications in Mathematical and in Computer Chemistry, 2007, 569–590
[33] J. Konc, D. Janezic, New C++ source code of the MaxCliqueDyn algorithm } {\tt http://insilab.org/
[34] E. Tomita, A. Tanaka, H. Takahashi, “The worst-case time complexity for generating all maximal cliques and computational experiments”, Theoretical Computer Science, 363:1 (2006), 28–42 | DOI
[35] A. Conte, Review of the Bron-Kerbosch algorithm and variations } {\tt http://www.dcs.gla.ac.uk/
[36] C. Bron, J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph”, Communications of the ACM, 16:9 (Sep 1973), 575–577 | DOI
[37] K. Ozaki, smly:find cliques - a pivoting version of Bron-Kerbosch algorithm } {\tt https://gist.github.com/smly/
[38] Boost C++ libraries } {\tt http://www.boost.org