Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 87-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parallel programs implementing stochastic cellular automata (CA) model of electron-hole recombination in an inhomogeneous semiconductor for two- and three-dimensional cases are developed. The spatio-temporaldistributions of particles are investigated by the CA simulation. Spatial separation of electrons and holes withclusters formation is found and analyzed. Parallel implementation of the CA model allows us to calculateintegral characteristics of the recombination process (particle densities and radiative intensity) in acceptable time. Recombination kinetics in the vicinity of the recombination centers and diffusion in two- and three-dimensionalspace is investigated using the parallel program.
Keywords: electron-hole recombination, semiconductor, stochastic cellular automaton, radiative intensity.
Mots-clés : parallel implementation
@article{VYURV_2017_6_1_a5,
     author = {K. K. Sabelfeld and A. E. Kireeva},
     title = {Parallel implementation of stochastic cellular automata model of electron-hole recombination in {2D} and {3D} heterogeneous semiconductors},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {87--103},
     year = {2017},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/}
}
TY  - JOUR
AU  - K. K. Sabelfeld
AU  - A. E. Kireeva
TI  - Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2017
SP  - 87
EP  - 103
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/
LA  - ru
ID  - VYURV_2017_6_1_a5
ER  - 
%0 Journal Article
%A K. K. Sabelfeld
%A A. E. Kireeva
%T Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2017
%P 87-103
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/
%G ru
%F VYURV_2017_6_1_a5
K. K. Sabelfeld; A. E. Kireeva. Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/

[1] A. Turkin, “Nitride Gaul as One of the Perspective Materials in Modern Optoelectronic”, Components and Technologies, 2011, no. 5, 6–10

[2] A. N. Gruzintsev, A. N. Red’kin, C. Barthou, “Radiative recombination of GaN nanocrystals at high power optical excitation”, Physics and Technique of Semiconductors, 2005, no. 10, 1200–1203

[3] G. Hong, R. Guoqiang, Z. Taofei, T. Feifei, X. Yu, Z. Yumin, W. Mingyue, Z. Zhiqiang, C. Demin, W. Jianfeng, X. Ke, “Study of optical properties of bulk GaN crystals grown by HVPE”, Journal of Alloys and Compounds, 674 (2016), 218–222

[4] K. A. Bulashevich, V. . Mymrin, S. Y. Karpov, I. A. Zhmakin, A. I. Zhmakin, “Simulation of visible and ultra-violet group-III nitride light emitting diodes”, Journal of Computational Physics, 213:1 (2006), 214–238

[5] V. F. Massimo, E. L. Steven, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”, Physical Review B, 38:38 (1988), 9721–9745

[6] E. Kotomin, V. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions. Cooperative Phenomena in Bimolecular Processes, Comprehensive Chemical Kinetics, 34, Elsevier Science, 1996, 611 pp.

[7] D. T. Gillespie, “A diffusional bimolecular propensity function”, Journal of Chemical Physics, 131:16 (2009), 1–13

[8] K. K. Sabelfeld, O. Brandt, V. M. Kaganer, “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chem, 53:2 (2015), 651–669

[9] A. A. Kolodko, K. K. Sabelfeld, “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Monte Carlo Methods and Applications, 7:3–4 (2001), 223–228

[10] A. Kolodko, K. Sabelfeld, W. Wagner, “A stochastic method for solving Smoluchowski’s coagulation equation”, Mathematics and Computers in Simulation, 49:1–2 (1999), 57-79

[11] K. K. Sabelfeld, A. I. Levykin, A. E. Kireeva, “Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations”, Monte Carlo Methods and Applications, 21:1 (2015), 33–48

[12] T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 259 pp.

[13] O. L. Bandman, “Cellular Automata Model of Spatial Dynamics”, System Informatics. Methods and Models of Modern Programming, 2006, no. 10, 59–113

[14] O. L. Bandman, “Mapping physical phenomena onto CA-models”, Theory and Applications of Cellular Automata, 2008, 381–397