Mots-clés : parallel implementation
@article{VYURV_2017_6_1_a5,
author = {K. K. Sabelfeld and A. E. Kireeva},
title = {Parallel implementation of stochastic cellular automata model of electron-hole recombination in {2D} and {3D} heterogeneous semiconductors},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {87--103},
year = {2017},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/}
}
TY - JOUR AU - K. K. Sabelfeld AU - A. E. Kireeva TI - Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2017 SP - 87 EP - 103 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/ LA - ru ID - VYURV_2017_6_1_a5 ER -
%0 Journal Article %A K. K. Sabelfeld %A A. E. Kireeva %T Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2017 %P 87-103 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/ %G ru %F VYURV_2017_6_1_a5
K. K. Sabelfeld; A. E. Kireeva. Parallel implementation of stochastic cellular automata model of electron-hole recombination in 2D and 3D heterogeneous semiconductors. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a5/
[1] A. Turkin, “Nitride Gaul as One of the Perspective Materials in Modern Optoelectronic”, Components and Technologies, 2011, no. 5, 6–10
[2] A. N. Gruzintsev, A. N. Red’kin, C. Barthou, “Radiative recombination of GaN nanocrystals at high power optical excitation”, Physics and Technique of Semiconductors, 2005, no. 10, 1200–1203
[3] G. Hong, R. Guoqiang, Z. Taofei, T. Feifei, X. Yu, Z. Yumin, W. Mingyue, Z. Zhiqiang, C. Demin, W. Jianfeng, X. Ke, “Study of optical properties of bulk GaN crystals grown by HVPE”, Journal of Alloys and Compounds, 674 (2016), 218–222
[4] K. A. Bulashevich, V. . Mymrin, S. Y. Karpov, I. A. Zhmakin, A. I. Zhmakin, “Simulation of visible and ultra-violet group-III nitride light emitting diodes”, Journal of Computational Physics, 213:1 (2006), 214–238
[5] V. F. Massimo, E. L. Steven, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”, Physical Review B, 38:38 (1988), 9721–9745
[6] E. Kotomin, V. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions. Cooperative Phenomena in Bimolecular Processes, Comprehensive Chemical Kinetics, 34, Elsevier Science, 1996, 611 pp.
[7] D. T. Gillespie, “A diffusional bimolecular propensity function”, Journal of Chemical Physics, 131:16 (2009), 1–13
[8] K. K. Sabelfeld, O. Brandt, V. M. Kaganer, “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chem, 53:2 (2015), 651–669
[9] A. A. Kolodko, K. K. Sabelfeld, “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Monte Carlo Methods and Applications, 7:3–4 (2001), 223–228
[10] A. Kolodko, K. Sabelfeld, W. Wagner, “A stochastic method for solving Smoluchowski’s coagulation equation”, Mathematics and Computers in Simulation, 49:1–2 (1999), 57-79
[11] K. K. Sabelfeld, A. I. Levykin, A. E. Kireeva, “Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations”, Monte Carlo Methods and Applications, 21:1 (2015), 33–48
[12] T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 259 pp.
[13] O. L. Bandman, “Cellular Automata Model of Spatial Dynamics”, System Informatics. Methods and Models of Modern Programming, 2006, no. 10, 59–113
[14] O. L. Bandman, “Mapping physical phenomena onto CA-models”, Theory and Applications of Cellular Automata, 2008, 381–397