Study of stationary currents for dynamic processes and admixtures of pollution in the Sea of Azov
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 56-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the use of three-dimensional nonlinear mathematical model dynamic processes and features of transformation are studied admixtures in the Sea of Azov, caused the action of variable wind and atmospheric pressure at presence of stationary currents. On the basis of results of numeral calculations conclusions are done about influence of sizes of speeds of stationary flows on the maximal rejections of level and speed of non-stationary currents, generated the fields of wind, SKIRON got on an atmospheric model. The analysis of influence of change intensity of stationary flows is executed on the sizes of areas of drainage and submergence in off-shore districts exterminating depending on the angle of slope (getting up) of relief of waterside area. It is set that the united action permanent and wind was simulated with the SKIRON weather forecasting system result in the substantial increase of area of distribution of passive admixture and time of its dispersion as compared to influence only of stationary currents.
Keywords: numerical modeling, sigma-coordinate model, dynamic processes, stationary currents, areas of drainage and submergence
Mots-clés : evolution of passive admixture.
@article{VYURV_2017_6_1_a3,
     author = {L. V. Cherkesov and T. Ya. Shul'ga},
     title = {Study of stationary currents for dynamic processes and admixtures of pollution in the {Sea} of {Azov}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {56--72},
     year = {2017},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a3/}
}
TY  - JOUR
AU  - L. V. Cherkesov
AU  - T. Ya. Shul'ga
TI  - Study of stationary currents for dynamic processes and admixtures of pollution in the Sea of Azov
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2017
SP  - 56
EP  - 72
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a3/
LA  - ru
ID  - VYURV_2017_6_1_a3
ER  - 
%0 Journal Article
%A L. V. Cherkesov
%A T. Ya. Shul'ga
%T Study of stationary currents for dynamic processes and admixtures of pollution in the Sea of Azov
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2017
%P 56-72
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a3/
%G ru
%F VYURV_2017_6_1_a3
L. V. Cherkesov; T. Ya. Shul'ga. Study of stationary currents for dynamic processes and admixtures of pollution in the Sea of Azov. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 56-72. http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a3/

[1] Hydrometeorological conditions of the shelf zone of the seas of the USSR, v. III, Sea of Azov, Gidrometeoizdat, St. Petersburg, 1986, 218 pp.

[2] V. N. Datsyuk, L. A. Krukier, A. L. Chikin, L. G. Chikina, “Simulation of extreme floods in the delta of the Don on multiprocessor computer systems.”, Bulletin of the South Ural State University. Series: Computational Mathematics and Informatics., 3:1 (2014), 80–88

[3] V. A. Ivanov, L. V. Cherkesov,T. Ya. Shul'ga, Dynamic processes and their influence on the distribution and transformation of pollutants in restricted marine basins, NPC «EKOSI-Gidrofizika», Sevastopol, 2010, 178 pp.

[4] V. A. Ivanov, V. V. Fomin, L. V Cherkesov., T. Ya. Shulga, “Issledovanie sgonnonagonnykh yavlenii v Azovskom more, vyzvannykh atmosfernymi vozmuscheniyami”, Doklady NAN Ukrainy, 2006, no. 11, 109–113

[5] Yu. I. Inzhebeykin, “Features of formation of short-term flooding and extreme currents in the sea of Azov”, Tr. Gos. Meteorol, 213 (2011), 91–102

[6] G. G. Matishov, S. V. Berdnikov, L. A. Bespalova, O. V. Ivlieva, A. E.Tsyigankova, S. M. Hartiev, A. R. Ioshpa, L. V. Kropyanko, K. S. Sushko, I. V. Sheverdyaev, E. V. Bespalova, Publishing of the South Federal University, Rostov-onDon, 2015, 324 pp.

[7] V. V. Fomin, “Numerical model of the circulation of the Azov Sea water”, Tr. Ukr. Nauchno-Issled. Gos. Meteorol. Inst., 2002, no. 249, 246–255

[8] V. V. Fomin, T. Ya. Shul’ga, “Study of the waves and currents caused by the wind in the Sea of Azov”, Dopov. Nats. Akad. Nauk Ukraini, 2006, no. 12, 110–115

[9] L. V. Cherkesov, V. A. Ivanov, S. M. Khartiev, Introduction into Hydrodynamics and Wave Theory, Gidrometeoizdat, St. Petersburg, 1992, 264 pp.

[10] I. N. Shabas, A. L. Chikin, L. G. Chikina, “Mathematical modeling of the problems of multicomponent pollution transport in the sea of Azov on the multiprocessor computing systems”, Izvestiya SFedU. Engineering Sciences, 2014, no. 12(161), 200–210

[11] A. F. Blumberg, G. L Mellor, “A description of three-dimensional coastal ocean-circulation model in Three-Dimensional Coast Ocean Models”, Coast. Estuar. Sci., 1987, no. 4, 1–16 | DOI

[12] R. Courant, K. O. Friedrichs, H. Lewy, “On the partial difference equations of mathematical physics”, IBM J, 1967, March, 215–234

[13] http://forecast.uoa.gr

[14] R. Courant, K. O. Friedrichs, H. Lewy, “Development of a turbulence closure model for geophysical fluid problems”, Rev. Geophys. Space Phys, 20:4 (1982), 851–875 | DOI

[15] J. Smagorinsky, “General circulation experiments with primitive equations. I: The basic experiment”, Mon. Wea. Rev., 91:3 (1963), 99–164 | 2.3.co;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI