Modification of the matrix pencil method using a combined evaluation of signal poles and their inverses
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 26-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Prony-like parametric method of signal processing, namely the Matrix Pencil Method, is considered in the paper. The method is able to find frequencies, damping factors, phases and amplitudes of a sinusoids sum. It needs fewer number of operations than Prony method and hence lower computational error. A modification of the method using a combined evaluation of signal poles and their inverses is proposed. This modification is able to solve the problem of true/false poles separation. Two matrix pencils with eigenvalues coinciding (in the absence of noise) with signal poles and their inverses are constructed from the signal samples. In case of noisy signal true/false poles separation is performed by: 1) SVD; 2) excessive order of prediction; 3) analysis of eigenvalues of two matrix pencils. Algorithms of the modified and classical Matrix Pencil Methods are given and compared on the example of signal detection in noise. It is shown that the classical method is not able to detect the time of arrival of the signal since it fits an exponential sum to the noise. The modified method can detect both the time of arrival and the signal frequency. The proposed algorithm of signal detection is suitable for use with signals of sufficiently general form (sum of decaying sine waves) and does not require distribution laws of signal and its noise component, as the maximum likelihood method.
Keywords: signal processing, matrix pencil method, detection of signal in noise, unknown time of arrival, frequency estimation.
@article{VYURV_2017_6_1_a1,
     author = {O. L. Ibryaeva and D. D. Salov},
     title = {Modification of the matrix pencil method using a combined evaluation of signal poles and their inverses},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {26--37},
     year = {2017},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a1/}
}
TY  - JOUR
AU  - O. L. Ibryaeva
AU  - D. D. Salov
TI  - Modification of the matrix pencil method using a combined evaluation of signal poles and their inverses
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2017
SP  - 26
EP  - 37
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a1/
LA  - ru
ID  - VYURV_2017_6_1_a1
ER  - 
%0 Journal Article
%A O. L. Ibryaeva
%A D. D. Salov
%T Modification of the matrix pencil method using a combined evaluation of signal poles and their inverses
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2017
%P 26-37
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a1/
%G ru
%F VYURV_2017_6_1_a1
O. L. Ibryaeva; D. D. Salov. Modification of the matrix pencil method using a combined evaluation of signal poles and their inverses. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 6 (2017) no. 1, pp. 26-37. http://geodesic.mathdoc.fr/item/VYURV_2017_6_1_a1/

[1] Y. Hua, T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially Damped Undamped Sinusoids in Noise”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38:5 (1990), 814–824

[2] D. Potts, M. Tasche, “Parameter Estimation for Non Increasing Exponential Sums by Prony-like Methods”, Special Section on Statistical Signal Array Processing, 90 (2010), 1631–1642

[3] Y. Lin, P. Hodkinson, M. Ernst, A. Pines, “A Novel Detection-estimation Scheme for Noisy NMR Signals: Applications to Delayed Acquisition Data”, Journal of Magnetic Resonance, 128 (1997), 30–41

[4] M. A. Konovalyuk, Yu. V. Kuznetsov, A. B. Baev, III Vserossiiskaya konferentsiya «Radiolokatsiya i svyaz», M (Moskva, 26–30 oktyabrya 2009 g.), Izd-vo IRE im. V.A.Kotelnikova RAN, Moskva

[5] A. A. Persichkin, A. A. Shpilevoi, “O metodike otsenki parametrov seismicheskikh signalov”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta, 2015, no. 10, 122-125

[6] M. Bhuiyan, E. V. Malyarenko, M. A. Pantea, D. Capaldi, A. E. Baylor, R. Gr. Maev, “Time-frequency Analysis of Clinical Percussion Signals Using Matrix Pencil Method”, Journal of Electrical and Computer Engineering, 2015 (2015), 340–347

[7] Tsifrovoi spektralnyi analiz i ego prilozheniya:, Izd-vo Mir, Moskva, 1990, 584 pp.

[8] A. L. Shestakov, A. S. Semenov, O. L. Ibryaeva, “Otsenka nesuschei chastoty sluchainoi posledovatelnosti impulsov metodom Proni”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser.l Matematicheskoe modelirovanie i programmirovanie, 2009, no. 37(170), 106–115

[9] S. V. Shostak, E. N. Baklanov, P. A. Starodubtsev, A. P. Shevchenko, “Reshenie zadachi «obnaruzhenie-izmerenie dalnosti» dlya malopodvizhnykh ob'ektov metodom aktivnoi korrelyatsii”, Zhurnal Radioelektroniki, 2015, no. 3, 101–117

[10] A. A. Loginov, O. A. Morozov, E. M. Sorokhtin, M. M. Sorokhtin, “Realizatsiya algoritma poiska signala zadannoi formy na fone shumov”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. Fizika tverdogo tela, 2005, no. 1(18), 141–145

[11] G. Van Tris, Teoriya obnaruzheniya, otsenok i modulyatsii., Izd-vo Sov. radio, Moskva, 1977, 650 pp.

[12] P. Stoica, R. L. Moses, B. Friedlander, T. Soderstrom, “Maximum Likelihood Estimation of the Parameters of Multiple Sinusoids from Noisy Measurements”, IEEE Transaction on Acoustics. Speech and Signal Processing., 37:3 (1989), 378–392

[13] X. Yang, B. Huang, H. Gao, “A Direct Maximum Likelihood Optimization Approach to Identification of LPV Time-delay Systems”, Journal of the Franklin Institute, 353 (2016), 1862–1881

[14] Y. Hua, T. K. Sarkar, “On the Total Least Squares Linear Prediction Method for Frequency Estimation”, IEEE Transaction on Acoustics, Speech and Signal Processing, 1990, 2186–2189

[15] F. R. Gantmakher, Teoriya matrits., FIZMATLIT, Moskva, 2004, 560 pp.

[16] R. Penrose, “On Best Approximate Solutions of Linear Matrix Equations”, Mathematical Proceedings of the Cambridge Philosophical Society., 52 (1956), 17-19

[17] E. S. Venttsel, L. A. Ovcharov, Teoriya veroyatnostei i ee inzhenernye prilozheniya, Vyssh. shk, Moskva, 2000, 480 pp.