Numerical hydrodynamics simulation of astrophysical flows at Intel Xeon Phi supercomputers
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 4, pp. 77-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we propose a research of AstroPhi code for numerical simulation of astrophysical flows at Intel Xeon Phi supercomputers. The co-design of a computational astrophysics model are described. The parallel implementation and scalability tests of the AstroPhi code are presented. The results of simulation of interaction between intergalactic wind and a disk galaxy are provided. For AstroPhi code a $134$x speed-up with one Intel Xeon Phi accelerator and $75 \%$ weak scaling efficiency on $224$x Intel Xeon Phi accelerators was obtained. We got peak of performance on a $7168 \times 1024 \times 1024$ mesh size by means $53760$ RSC PetaStream threads.
Keywords: high performance computing, numerical astrophysics, Intel Xeon Phi accelerators.
@article{VYURV_2016_5_4_a5,
     author = {I. M. Kulikov and I. G. Chernykh and E. I. Vorobyov and A. V. Snytnikov and D. V. Weins and A. A. Moskovsky and A. B. Shmelev and V. A. Protasov and A. A. Serenko and V. E. Nenashev and V. A. Vshivkov and A. S. Rodionov and B. M. Glinsky and A. V. Tutukov},
     title = {Numerical hydrodynamics simulation of astrophysical flows at {Intel} {Xeon} {Phi} supercomputers},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {77--97},
     year = {2016},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a5/}
}
TY  - JOUR
AU  - I. M. Kulikov
AU  - I. G. Chernykh
AU  - E. I. Vorobyov
AU  - A. V. Snytnikov
AU  - D. V. Weins
AU  - A. A. Moskovsky
AU  - A. B. Shmelev
AU  - V. A. Protasov
AU  - A. A. Serenko
AU  - V. E. Nenashev
AU  - V. A. Vshivkov
AU  - A. S. Rodionov
AU  - B. M. Glinsky
AU  - A. V. Tutukov
TI  - Numerical hydrodynamics simulation of astrophysical flows at Intel Xeon Phi supercomputers
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 77
EP  - 97
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a5/
LA  - ru
ID  - VYURV_2016_5_4_a5
ER  - 
%0 Journal Article
%A I. M. Kulikov
%A I. G. Chernykh
%A E. I. Vorobyov
%A A. V. Snytnikov
%A D. V. Weins
%A A. A. Moskovsky
%A A. B. Shmelev
%A V. A. Protasov
%A A. A. Serenko
%A V. E. Nenashev
%A V. A. Vshivkov
%A A. S. Rodionov
%A B. M. Glinsky
%A A. V. Tutukov
%T Numerical hydrodynamics simulation of astrophysical flows at Intel Xeon Phi supercomputers
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 77-97
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a5/
%G ru
%F VYURV_2016_5_4_a5
I. M. Kulikov; I. G. Chernykh; E. I. Vorobyov; A. V. Snytnikov; D. V. Weins; A. A. Moskovsky; A. B. Shmelev; V. A. Protasov; A. A. Serenko; V. E. Nenashev; V. A. Vshivkov; A. S. Rodionov; B. M. Glinsky; A. V. Tutukov. Numerical hydrodynamics simulation of astrophysical flows at Intel Xeon Phi supercomputers. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 4, pp. 77-97. http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a5/

[1] A. Tutukov, G. Lazareva, I. Kulikov, “Gas Dynamics of a Central Collision of Two Galaxies: Merger, Disruption, Passage, and the Formation of a New Galaxy”, Astronomy Reports, 55:9 (2011), 770–783 | DOI

[2] N. Mitchell, E. Vorobyov, G. Hensler, “Collisionless Stellar Hydrodynamics as an Efficient Alternative to N-body Methods”, Monthly Notices of the Royal Astronomical Society, 428:3 (2013), 2674–2687 | DOI | MR

[3] N.V. Ardeljan, G.S. Bisnovatyi-Kogan, G.S. Kosmachevskii, S.G. Moiseenko, “An Implicit Lagrangian Code for the Treatment of Nonstationary Problems in Rotating Astrophysical Bodies”, Astronomy and Astrophysics Supplement Series, 115 (1996), 573–594

[4] S.A. Khoperskov, E.O. Vasiliev, A.M. Sobolev, A.V. Khoperskov, “The Simulation of Molecular Clouds Formation in the MilkyWay”, Monthly Notices of the Royal Astronomical Society, 428 (2013), 2311–2320 | DOI

[5] A. Fletcher, R .Beck, A. Shukurov, E. Berkhuijsen, C. Horellou, “Magnetic Fields and Spiral Arms in the Galaxy M51”, Monthly Notices of the Royal Astronomical Society, 412 (2014), 2396–2416 | DOI

[6] I. Kulikov, “GPUPEGAS: A New GPU-accelerated Hydrodynamic Code for Numerical Simulations of Interacting Galaxies”, The Astrophysical Journal Supplement Series, 214 (2014), 12 | DOI

[7] I.M. Kulikov, I.G. Chernykh, A.V. Snytnikov, B.M. Glinskiy, A.V. Tutukov, “AstroPhi: A Code for Complex Simulation of Dynamics of Astrophysical Objects Using Hybrid Supercomputers”, Computer Physics Communications, 186 (2015), 71–80 | DOI

[8] I.M. Kulikov, I.G. Chernykh, B.M. Glinskiy, “AstroPhi: a Hydrodynamical Code for Complex Modelling of Astrophysical Objects Dynamics by Means of Hybrid Architecture Supercomputers on Intel Xeon Phi Base”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 2:4 (2013), 57–79 | DOI

[9] B. Glinskiy, I. Kulikov, A. Snytnikov, A. Romanenko, I. Chernykh, V. Vshivkov, “Co-design of Parallel Numerical Methods for Plasma Physics and Astrophysics”, Supercomputing Frontiers and Innovations, 1:3 (2015), 88–98

[10] E. Vorobyov, S. Recchi, G. Hensler, “Stellar Hydrodynamical Modeling of Dwarf Galaxies: Simulation Methodology, Tests, and First Results”, Astronomy Astrophysics, 579 (2015) (Id. A9) | DOI

[11] I. Kulikov, I. Chernykh, B. Glinskiy, D. Weins, A. Shmelev, “Astrophysics Simulation on RSC Massively Parallel Architecture”, Proceedings – 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, 2015, 1131–1134 | DOI

[12] V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, “Supercomputer Simulation of an Astrophysical Object Collapse by the Fluids-in-Cell Method”, Lecture Notes of Computer Science, 5698, 2009, 414–422 | DOI

[13] I. Kulikov, I. Chernykh, E. Katysheva, A. Protasov, A. Serenko, “The Numerical Simulation of Interacting Galaxies by Means of Hybrid Supercomputers”, Bulletin NCC: Numerical Analysis, 17 (2015), 17–33

[14] M. Popov, S. Ustyugov, “Piecewise Parabolic Method on Local Stencil for Gasdynamic Simulations”, Computational Mathematics and Mathematical Physics, 47:12 (2007), 1970–1989 | DOI | MR

[15] M. Popov, S. Ustyugov, “Piecewise Parabolic Method on a Local Stencil for Ideal Magnetohydrodynamics”, Computational Mathematics and Mathematical Physics, 48:3 (2008), 477–499 | DOI | MR | Zbl

[16] V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, A. Tutukov, “Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies”, The Astrophysical Journal Supplement Series, 194 (2011), 47 | DOI

[17] S. Godunov, I. Kulikov, “Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies”, Computational Mathematics and Mathematical Physics, 54 (2014), 1012–1024 | DOI | MR | Zbl

[18] V. Vshivkov, G. Lazareva, A. Snytnikov, I. Kulikov, A. Tutukov, “Computational Methods for Ill-posed Problems of Gravitational Gasodynamics”, Journal of Inverse and Ill-posed Problems, 19:1 (2011), 151–166 | DOI | MR | Zbl

[19] I. Kulikov, E. Vorobyov, “Using the PPML Approach for Constructing a Low-Dissipation, Operator-Splitting Scheme for Numerical Simulations of Hydrodynamic Flows”, The Journal of Computational Physics, 317:1 (2016), 318–346 | DOI | MR | Zbl

[20] I. Kulikov, I. Chernykh, A. Snytnikov, V. Protasov, A. Tutukov, B. Glinsky, “Numerical Modelling of Astrophysical Flow on Hybrid Architecture Supercomputers”, Parallel Programming: Practical Aspects, Models and Current Limitations, ed. M. Tarkov, 2015, 71–116

[21] M. Frigo, S. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI

[22] A. Kalinkin, Y. Laevsky, S. Gololobov, “2D Fast Poisson Solver for High-Performance Computing”, Lecture Notes in Computer Science, 5698, 2009, 112–120 | DOI

[23] H. Schive, Y. Tsai, T. Chiueh, “GAMER: a GPU-accelerated Adaptive-Mesh-Refinement Code for Astrophysics”, The Astrophysical Journal, 186 (2010), 457–484 | DOI

[24] D. Podkorytov, A. Rodionov, O. Sokolova, A. Yurgenson, “Using Agent-Oriented Simulation System AGNES for Evaluation of Sensor Networks”, Lecture Notes of Computer Science, 6235, 2010, 247–250 | DOI

[25] Y.L. Jaffe, R. Smith, G. Candlish, B.M. Poggianti, Y.K. Sheen, M.A.W. Verheijen, “BUDHIES II: A Phase-Space View of HI Gas Stripping and Star-Formation Quenching in Cluster Galaxies”, Monthly Notices of the Royal Astronomical Society, 448 (2015), 1715–1728 | DOI

[26] B. Vollmer, V. Cayatte, C. Balkowski, W.J. Duschl, “Ram Pressure Stripping and Galaxy Orbits: The Case of the Virgo Cluster”, The Astrophysical Journal, 561 (2001), 708–726 | DOI

[27] V. Cayatte, C. Kotanyi, C. Balkowski, J.H. van Gorkom, “A Very Large Array Survey of Neutral Hydrogen in Virgo Cluster Spirals. 3: Surface Density Profiles of the Gas”, The Astronomical Journal, 107:3 (1994), 1003–1017 | DOI