Implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on reconfigurable computer systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 4, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider unique features of implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on parallel computer systems, such as geometric decomposition of the computational domain and data parallelization in sequentially performed iterations with intensive data exchange between processors and memory. Standard methods of implementation of iteration methods of solution of linear equation systems with multiple exchanges with memory and between processors, which considerably reduce the performance, require a big number of communication channels in the computer system for implementation of complex topologies and hierarchic schemes of data storage. The solution of this problem is use of multiprocessor systems with reconfigurable architecture which allow adaptation of their architecture to the structure of iteration algorithms of mathematical physics owing to iteration parallelization. In this paper we analyze implementation of the Jacobi method for the Dirichlet problem for the Laplace equation on a reconfigurable computer system. This implementation is an example which illustrates reduction of the number of external data exchange channels, which are the most critical resource of the reconfigurable computer system.
Keywords: reconfigurable computer systems, FPGAs, numerical methods of mathematical physics, iteration parallelization, computational pipeline.
@article{VYURV_2016_5_4_a0,
     author = {I. I. Levin and A. I. Dordopulo and A. V. Pelipets},
     title = {Implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on reconfigurable computer systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--18},
     year = {2016},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a0/}
}
TY  - JOUR
AU  - I. I. Levin
AU  - A. I. Dordopulo
AU  - A. V. Pelipets
TI  - Implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on reconfigurable computer systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 5
EP  - 18
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a0/
LA  - ru
ID  - VYURV_2016_5_4_a0
ER  - 
%0 Journal Article
%A I. I. Levin
%A A. I. Dordopulo
%A A. V. Pelipets
%T Implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on reconfigurable computer systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 5-18
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a0/
%G ru
%F VYURV_2016_5_4_a0
I. I. Levin; A. I. Dordopulo; A. V. Pelipets. Implementation of iteration methods for solution of linear equation systems in problems of mathematical physics on reconfigurable computer systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/VYURV_2016_5_4_a0/

[1] A.A. Samarskij, A.V. Gulin, Numerical Methods of Mathematical Physics, 2 ed., Nauchnyj mir, Moscow, 2003, 316 pp.

[2] V.P. Gergel', Theory and Practice of Parallel Calculations, BINOM, Moscow, 2007, 424 pp.

[3] K. Asanovic et al., “A View of the Parallel Computing Landscape”, Communications of the ACM, 52:10 (2009), 56–67 | DOI

[4] X. Guo et al., “Developing a Scalable Hybrid Mpi/openmp Unstructured Finite Element Model”, Computers Fluids, 110 (2015), 227–234 | DOI

[5] R. Li, Y. Saad, “Gpu-Accelerated Preconditioned Iterative Linear Solvers”, The Journal of Supercomputing, 63:2 (2015), 443–466 | DOI

[6] J. Wolfson-Pou, E. Chow, “Reducing Communication in Distributed Asynchronous Iterative Methods”, Procedia Computer Science, 80 (2016), 1906–1916 | DOI

[7] X. Liu, Z. Zhong, K. Xu, “A Hybrid Solution Method for CFD Applications on GPU-accelerated Hybrid HPC Platforms”, Future Generation Computer Systems, 56 (2016), 759–765 | DOI

[8] L. Deng et al., “CPU/GPU Computing for AN Implicit Multi-block Compressible Navier-stokes Solver on Heterogeneous Platform”, International Journal of Modern Physics: Conference Series, 42 (2016), 163–166 | DOI

[9] I. Stroia et al., “Gpu Accelerated Geometric Multigrid Method: Comparison with Preconditioned Conjugate Gradient”, High Performance Extreme Computing Conference (HPEC) IEEE, 2015, 1–6 | DOI

[10] I.A. Kaljaev, I.I. Levin, E.A. Semernikov, V.I. Shmojlov, Reconfigurable Multipipeline Computing Structures, Publishing SSC RAS, Rostov-on-Don, 2008, 320 pp.

[11] Virtex-6 Family Overview, , 2015 (data obrascheniya: 16.06.2016) http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[12] 7 Series FPGAs Overview, , 2015 (data obrascheniya: 16.06.2016) http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

[13] UltraScale Architecture and Product Overview, , 2016 (data obrascheniya: 16.06.2016) http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascaleoverview.pdf

[14] A.N. Tihonov, A.A. Samarskij, Equations of Mathematical Physics, Nauka, Moscow, 1972, 736 pp. | MR

[15] I.I. Levin, D.A. Sorokin, A.K. Mel'nikov, A.I. Dordopulo, “The Decision of Tasks with Essential and Variable Intensity of Data Streams on Reconfigurable Computing Systems”, Bulletin of Computer and Information Technologies, 2012, no. 2, 49–56

[16] I.I. Levin, A.I. Dordopulo, I.A. Kaljaev, Y.I. Doronchenko, M.K. Rasklakin, “Modern and Next-generation High-performance Computer Systems with Reconfigurable Architecture”, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 4:3 (2015), 24–39 | DOI

[17] E.D. Karepova, V.V. SHajdurov, M.S. Vdovenko, “Parallel Realization of a Method of Final Elements for a Regional Task for the Equations of Small Water”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming Computer Software, 3:17(150) (2009), 73–85 | Zbl