@article{VYURV_2016_5_3_a4,
author = {S. A. Ivanov},
title = {Calculation of stability domains of discrete models of big size small world networks},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {69--75},
year = {2016},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a4/}
}
TY - JOUR AU - S. A. Ivanov TI - Calculation of stability domains of discrete models of big size small world networks JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2016 SP - 69 EP - 75 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a4/ LA - ru ID - VYURV_2016_5_3_a4 ER -
%0 Journal Article %A S. A. Ivanov %T Calculation of stability domains of discrete models of big size small world networks %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2016 %P 69-75 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a4/ %G ru %F VYURV_2016_5_3_a4
S. A. Ivanov. Calculation of stability domains of discrete models of big size small world networks. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 3, pp. 69-75. http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a4/
[1] D. Watts, S. Strogatz, “Collective Dynamics of «Small-World» Networks”, Nature, 393 (1998), 440–442 | DOI
[2] R.T. Gray, C.K.C. Fung, P.A. Robinson, “Stability of Small-World Networks of Neural Populations”, Neurocomputing, 72(7–9) (2009), 1565–1574 | DOI
[3] S. Sinha, “Complexity vs Stability in Small-World Networks”, Physica A, 346 (2005), 147–153 | DOI
[4] M.G. Hart, R.J.F. Ypma, R. Romero-Garcia, S.J. Price, J. Suckling, “Graph Theory Analysis of Complex Brain Networks: New Concepts in Brain Maping Aplied to Neurosurgery”, Journal of Neurosurgery, 124:6 (2016), 1665–1678 | DOI
[5] T.I. Netoff, R. Clewley, S. Arno, T. Keck, A. John, “White Epilepsy in Small-World Networks”, The Journal of Neuroscience, 24(37) (2004), 8075–8083
[6] M.A. Arbib, P. Érdi, J. Szentágothai, Neural Organization: Structure, Function, and Dynamics, MIT Press, Cambridge, MA, 1998, 420 pp.
[7] M. Arbib, The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, 2003, 1308 pp.
[8] S.A. Ivanov, M.M. Kipnis, “Stability Analysis Discrete-Time Neural Networks with Delayed Interactions: Torus, Ring, Grid, Line”, International Journal of Pure and Aplied Math, 78(5) (2012), 691–709
[9] S.A. Ivanov, M.M. Kipnis, R. Medina, “On the Stability of the Cartesian Product of a Neural Ring and an Arbitrary Neural Network”, Advances in Difference Equations, 2014 (2014), 1–7 | DOI
[10] M.M. Kipnis, V.V. Malygina, “The Stability Cone for a Matrix Delay Difference Equation”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1–15
[11] S.A. Ivanov, M.M. Kipnis, V.V. Malygina, “The Stability Cone for a Difference Matrix Equation with Two Delays”, ISRN Aplied Math, 2011 (2011), 1–19 | DOI
[12] T.N. Khokhlova, “The Construction of Regions of Stability of a Circular Neural Networks”, Chronicles of OFERNiO, 1(32) (2012), 4–5
[13] T.N. Khokhlova, M.M. Kipnis, “The Breaking of a Delayed Ring Neural Network Contributes to Stability: The Rule and Exceptions”, Neural Networks, 48 (2013), 148–152 | DOI