Mots-clés : Laplace transform
@article{VYURV_2016_5_3_a1,
author = {N. M. Yaparova},
title = {Method for solving an inverse term source problem based on the {Laplace} transform},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {20--35},
year = {2016},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a1/}
}
TY - JOUR AU - N. M. Yaparova TI - Method for solving an inverse term source problem based on the Laplace transform JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2016 SP - 20 EP - 35 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a1/ LA - ru ID - VYURV_2016_5_3_a1 ER -
%0 Journal Article %A N. M. Yaparova %T Method for solving an inverse term source problem based on the Laplace transform %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2016 %P 20-35 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a1/ %G ru %F VYURV_2016_5_3_a1
N. M. Yaparova. Method for solving an inverse term source problem based on the Laplace transform. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 3, pp. 20-35. http://geodesic.mathdoc.fr/item/VYURV_2016_5_3_a1/
[1] O.M. Alifanov, Inverse Heat Transfer Problems, Mashinostroenie, Moscow, 1988, 280 pp.
[2] A.S. Erdogan, A.U. Sazaklioglu, “A Note on the Numerical Solution of an Identification Problem for Observing Two-Phase Flow in Capillaries”, Mathematical Method in the Applied Sciences, 37:16 (2014), 2393–2405 | DOI
[3] A.M. Zenkour, A.E. Abouelregal, “Vibration of FG Nanobeams Induced by Sinusoidal Pulse-Heating via a Nonlocal Thermoelastic Model”, ACTA Mechanica, 225:12 (2014), 3409–3421 | DOI
[4] P.N. Vabishchevich, “Numerical Solution of the Problem Identifying the Right Part a Parabolic Equation”, Russian Mathematics, 47:1 (2003), 27–35
[5] N.L. Gol’dman, “Uniqueness of Determination of a Source Function in a Quasilinear Inverse Stefan Problem with Final Observation”, Doklady Mathematics, 444:6 (2012), 597–601 | DOI
[6] A.I. Prilepko, D.S. Tkachenko, “Well-Posedness of the Inverse Source Problem for Parabolic Systems”, Differential Equations, 40:11 (2004), 1619–1626 | DOI
[7] O.N. Cherepanova, T.N. Shipina, “On a Problem of Identification of the Source Function in the Parabolic Equation”, J. Noth. Federal Univ., 2:3 (2009), 370–375
[8] A. Hasanov, B. Pektas, “Identification of an Unknown Time-Dependent Heat Source Term from Overspecified Dirichlet Boundary Data by Conjugate Gradient Method”, Computers and Mathematics with Applications, 65:1 (2013), 42–57 | DOI
[9] M. Cialkowski, K. Grysa, “A Sequential and Global Method of Solving an Inverse Problem of Heat Conduction Equation”, Journal of Theoretical and Applied Mechanics, 48:1 (2010), 111–134
[10] M. Monde, H. Arima, W. Liu, Y. Mitutake, J.A. Hammad, “An Analytical Solution for Two-Dimensional Inverse Heat Conduction Problems Using Laplace Transform”, International Journal of Heat and Mass Transfer, 46 (2003), 2135–2148 | DOI
[11] N.M. Yaparova, “A Method for Solving the Inverse Problem of Identifying the Source Function for System with Distributed Parameters”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1549–1552
[12] S.V. Solodusha, N.M. Yaparova, “Numerical Solving an Inverse Boundary Problem of Heat Conduction Using Volterra Equations of the First Kind”, Numerical Analysis and Applications, 8:3 (2015), 267–274 | DOI
[13] N. Yaparova, “Numerical Methods for Solving a Boundary Value Inverse Heat Conduction Problem”, Inverse Problems in Science and Engineering, 22:5 (2014), 832–847 | DOI
[14] A.S. Apartsyn, A.B. Bakushinskii, “Approximate Solution of Volterra Integral Equations of the First Kind by the Quadratures Method”, Differential and Integral Equations, 1 (1972), 248–258
[15] V.V. Vasin, T.I. Serezhnikova, “A Regularizing Algorithm for Approximation of a Non-Smoth Solution of Fredholm Integral Equations of the First Kind”, Computatuional Technologies, 15:2 (2010), 15–23
[16] S.I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, Germany, 2011, 457 pp. | DOI
[17] Yu.M. Korolev, A.G. Yagola, “Error Estimation in Linear Inverse Problems with Prior Information”, Numerical Methods and Programming, 13:1(25) (2012), 14–18
[18] I. Bushuev, “Global Uniqueness for Inverse Parabolic Problems with Final Observation”, Inverse Problems, 11:4 (1995), L11–L16 | DOI
[19] G.Doetsch, Guide to the Applications of the Laplace and Z Transforms, Nauka, Moscow, 1971, 291 pp.
[20] M.L. Krasnov, Integral Equations. Introduction to the Theory, Nauka, Moscow, 1975, 302 pp.
[21] M.M. Lavrentiev, Conditionally Correct Problems for Differential Equations, Publishing of Novosibirsk Goverment University, Novosibirsk, 1973, 71 pp.
[22] A.S. Leonov, “On Quasioptimum Selection of the Regularization Parameter in M.M. Lavreny’ev’s Method”, Siberian Mathemathical Journal, 34:4 (1993), 695–703 | DOI