Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 2, pp. 43-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the inverse problem for a nonlinear parabolic equation with unknown initial conditions. A computational scheme for solving this problem is proposed. This approach allows obtain the numerical solution in internal points of domain and the unknown boundary function. The proposed scheme is based on the using of finite-difference equations and regularization technique. We investigate the stability of computational method. We obtained the dependence of stability on the discretization steps and level error of the initial data The proposed scheme proved the basis for development of numerical method and for the computational experiment. The experimental results are also presented in this paper, and confirm the effectiveness of the method.
Keywords: inverse problem, numerical method, regularization method, error estimate, computational scheme.
@article{VYURV_2016_5_2_a3,
     author = {N. M. Yaparova},
     title = {Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {43--58},
     year = {2016},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/}
}
TY  - JOUR
AU  - N. M. Yaparova
TI  - Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 43
EP  - 58
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/
LA  - ru
ID  - VYURV_2016_5_2_a3
ER  - 
%0 Journal Article
%A N. M. Yaparova
%T Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 43-58
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/
%G ru
%F VYURV_2016_5_2_a3
N. M. Yaparova. Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 2, pp. 43-58. http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/

[1] O.M. Alifanov, Inverse Heat Transfer Problems, Mashinostroenie, Moscow, 1988, 280 pp.

[2] A.A. Samarskij, P.N. Vabishchevich, Computational Heat Transfer, Editorial URSS, Moscow, 2009, 784 pp.

[3] L.A. Prokudina, G.P. Vyatkin, “Self-Organization of Perturbations in Fluid Films”, Doklady Physics, 56:8 (2011), 444–447 | DOI

[4] G.T. Bulgakova, N.R. Kondrat'eva, “Analytical Model of Vertical Oil-Water Displacement with the Account of Viscous, Capillary and Gravity Forces”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2012, no. 1, 208–213

[5] A.L. Shestakov, The Methods of Control Theory in Dynamic Measurements, Publishing of the South Ural State University, Chelyabinsk, 2013, 257 pp.

[6] L.K. Martinson, O.Y. Chigiryova, “Thermal Fields of a Cylindrical Body During Cyclic Heating”, Herald of the Bauman Moscow State Technical University, Series: Natural Sciences, 2015, no. 3 (60), 88–98

[7] K.Y. Dorofeev , N.N. Nikolaeva, V.N. Titarenko, A.G. Yagola, “New Approaches to Error Estimation to Ill-Posed Problems with Application to Inverse Problems of Heat Conductivity”, Journal of Inverse and Ill-Posed Problems, 10:2 (2002), 155–169

[8] V.P. Tanana, “An Order-Optimal Method for Solving an Inverse Problem for a Parabolic Equation”, Numerical Analysis and Applications, 3:4 (2010), 367–371

[9] E.V. Tabarinceva, “About Solution of the Boundary Inverse Problem for Parabolic Equation by Means of Subsidiary Boundary Conditions Method”, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 2011, no. 32(249), 68–76

[10] V.P. Tanana, I.A. Gajnova, A.I. Sidikova, “The Estimation of Approximate Solutions an Overdetermined Inverse Problem of Thermal Diagnostics”, Journal of Applied and Industrial Mathematics, XV:1 (2012), 145–154

[11] S.I. Kabanihin, M.A. Shishlenin, “Direct and Iterati on Methods for Solving Inverse and Ill-Posed Problems”, Siberian Electronic Mathematical Reports, 5 (2008), 595–608

[12] Y. Zhang, D.V. Lukyanenko, A.G. Yagola, “Using Lagrange Principle for Solving Two Dimensional Integral Equation With a Positive Kernel”, Inverse Problems in Science and Engineering, 2015, 811–831 | DOI

[13] S.V. Solodusha, N.M. Yaparova, “Numerical Solving an Inverse Boundary Value Problem of Heat Conduction Using Volterra Equations of the First Kind”, Numerical Analysis and Applications, 8:3 (2015), 267–274

[14] A.D. Drozin, M.V. Dudorov, V.E. Roshchin, P.A. Gamov, L.D. Menihes, “Mathematical Description of the Nucleation in Supercooled Eutectic Melt”, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 2012, no. 11(270), 66–77

[15] G.I. Marchuk, Methods of Computational Mathematics, Publishing of the Lan’, St. Petersburg, 2009, 608 pp.

[16] P.N. Vabishchevich, “Monotone Finite-Difference Schemes on Triangular Grids for Convection-Diffusion Problems”, Differential Equations, 42:9 (1994), 1317–1330

[17] A.N. Tihonov, A.A. Samarskij, Equations of Mathematical Physics, Publishing of the Moscow State University, Moscow, 1999, 799 pp.

[18] Z. Kamont, K. Kropelnicka, “Implicit Difference Methods for Evolution Functional Differential Equations”, Numerical Analysis and Applications, 14:4 (2011), 361–379

[19] O.V. Glazyrina, M.F. Pavlova, “Study of the Convergence of the Finite-Element Method for Parabolic Equations with a Nonlinear Nonlocal Spatial Operator”, Differential Equations, 51:7 (2015), 872–885

[20] N.M. Yaparova, “Numerical Method for Solving Some Inverse Heat Conduction Problems with Unknown Initial Conditions”, Bulletin of the South Ural State University, Series: Computer Technologies, Automatic Control and Radioelectronics, 15:2 (2015), 55–65

[21] N.M. Yaparova, “Method for Solving Some Multidimensional Inverse Boundary Value Problems for Parabolic PDEs Without Conditions”, Bulletin of the South Ural State University, Series: Computer Technologies, Automatic Control and Radioelectronics, 15:2 (2015), 97–108

[22] A.A. Samarskij, The Theory of Difference Shemes, Nauka, Moscow, 1971, 552 pp.

[23] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasi-Linear Parabolic Equations, Nauka, Moscow, 1967, 736 pp.

[24] A.N. Tihonov, A.V. Goncharskij, V.V. Stepanov, A.G.Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Publishing of the Moscow State University, Moscow, 1990, 115 pp.