@article{VYURV_2016_5_2_a3,
author = {N. M. Yaparova},
title = {Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {43--58},
year = {2016},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/}
}
TY - JOUR AU - N. M. Yaparova TI - Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2016 SP - 43 EP - 58 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/ LA - ru ID - VYURV_2016_5_2_a3 ER -
%0 Journal Article %A N. M. Yaparova %T Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2016 %P 43-58 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/ %G ru %F VYURV_2016_5_2_a3
N. M. Yaparova. Numerical method for solving an inverse problem for nonlinear parabolic equation with unknown initial conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 2, pp. 43-58. http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a3/
[1] O.M. Alifanov, Inverse Heat Transfer Problems, Mashinostroenie, Moscow, 1988, 280 pp.
[2] A.A. Samarskij, P.N. Vabishchevich, Computational Heat Transfer, Editorial URSS, Moscow, 2009, 784 pp.
[3] L.A. Prokudina, G.P. Vyatkin, “Self-Organization of Perturbations in Fluid Films”, Doklady Physics, 56:8 (2011), 444–447 | DOI
[4] G.T. Bulgakova, N.R. Kondrat'eva, “Analytical Model of Vertical Oil-Water Displacement with the Account of Viscous, Capillary and Gravity Forces”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2012, no. 1, 208–213
[5] A.L. Shestakov, The Methods of Control Theory in Dynamic Measurements, Publishing of the South Ural State University, Chelyabinsk, 2013, 257 pp.
[6] L.K. Martinson, O.Y. Chigiryova, “Thermal Fields of a Cylindrical Body During Cyclic Heating”, Herald of the Bauman Moscow State Technical University, Series: Natural Sciences, 2015, no. 3 (60), 88–98
[7] K.Y. Dorofeev , N.N. Nikolaeva, V.N. Titarenko, A.G. Yagola, “New Approaches to Error Estimation to Ill-Posed Problems with Application to Inverse Problems of Heat Conductivity”, Journal of Inverse and Ill-Posed Problems, 10:2 (2002), 155–169
[8] V.P. Tanana, “An Order-Optimal Method for Solving an Inverse Problem for a Parabolic Equation”, Numerical Analysis and Applications, 3:4 (2010), 367–371
[9] E.V. Tabarinceva, “About Solution of the Boundary Inverse Problem for Parabolic Equation by Means of Subsidiary Boundary Conditions Method”, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 2011, no. 32(249), 68–76
[10] V.P. Tanana, I.A. Gajnova, A.I. Sidikova, “The Estimation of Approximate Solutions an Overdetermined Inverse Problem of Thermal Diagnostics”, Journal of Applied and Industrial Mathematics, XV:1 (2012), 145–154
[11] S.I. Kabanihin, M.A. Shishlenin, “Direct and Iterati on Methods for Solving Inverse and Ill-Posed Problems”, Siberian Electronic Mathematical Reports, 5 (2008), 595–608
[12] Y. Zhang, D.V. Lukyanenko, A.G. Yagola, “Using Lagrange Principle for Solving Two Dimensional Integral Equation With a Positive Kernel”, Inverse Problems in Science and Engineering, 2015, 811–831 | DOI
[13] S.V. Solodusha, N.M. Yaparova, “Numerical Solving an Inverse Boundary Value Problem of Heat Conduction Using Volterra Equations of the First Kind”, Numerical Analysis and Applications, 8:3 (2015), 267–274
[14] A.D. Drozin, M.V. Dudorov, V.E. Roshchin, P.A. Gamov, L.D. Menihes, “Mathematical Description of the Nucleation in Supercooled Eutectic Melt”, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 2012, no. 11(270), 66–77
[15] G.I. Marchuk, Methods of Computational Mathematics, Publishing of the Lan’, St. Petersburg, 2009, 608 pp.
[16] P.N. Vabishchevich, “Monotone Finite-Difference Schemes on Triangular Grids for Convection-Diffusion Problems”, Differential Equations, 42:9 (1994), 1317–1330
[17] A.N. Tihonov, A.A. Samarskij, Equations of Mathematical Physics, Publishing of the Moscow State University, Moscow, 1999, 799 pp.
[18] Z. Kamont, K. Kropelnicka, “Implicit Difference Methods for Evolution Functional Differential Equations”, Numerical Analysis and Applications, 14:4 (2011), 361–379
[19] O.V. Glazyrina, M.F. Pavlova, “Study of the Convergence of the Finite-Element Method for Parabolic Equations with a Nonlinear Nonlocal Spatial Operator”, Differential Equations, 51:7 (2015), 872–885
[20] N.M. Yaparova, “Numerical Method for Solving Some Inverse Heat Conduction Problems with Unknown Initial Conditions”, Bulletin of the South Ural State University, Series: Computer Technologies, Automatic Control and Radioelectronics, 15:2 (2015), 55–65
[21] N.M. Yaparova, “Method for Solving Some Multidimensional Inverse Boundary Value Problems for Parabolic PDEs Without Conditions”, Bulletin of the South Ural State University, Series: Computer Technologies, Automatic Control and Radioelectronics, 15:2 (2015), 97–108
[22] A.A. Samarskij, The Theory of Difference Shemes, Nauka, Moscow, 1971, 552 pp.
[23] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasi-Linear Parabolic Equations, Nauka, Moscow, 1967, 736 pp.
[24] A.N. Tihonov, A.V. Goncharskij, V.V. Stepanov, A.G.Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Publishing of the Moscow State University, Moscow, 1990, 115 pp.