Implementation of parallel pursuit algorithm for solving unstable linear programming problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 2, pp. 15-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper describes an implementation of the parallel pursuit algorithm for solving unstable linear programming problems of high dimension on cluster computing systems. This algorithm uses Fejer's mappings for building pseudo-projection on polyhedron. The algorithm tracks changes in input data and corrects the calculation process. This task is divided into set of independent subtasks, which can be processed in parallel. The UML activity diagrams describing the algorithm implementation are presented.
Keywords: unstable linear programming problem, Fejer's mappings, pursuit algorithm, UML activity diagrams, massive parallelism, cluster computing system.
@article{VYURV_2016_5_2_a1,
     author = {I. M. Sokolinskaya and L. B. Sokolinsky},
     title = {Implementation of parallel pursuit algorithm for solving unstable linear programming problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {15--29},
     year = {2016},
     volume = {5},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a1/}
}
TY  - JOUR
AU  - I. M. Sokolinskaya
AU  - L. B. Sokolinsky
TI  - Implementation of parallel pursuit algorithm for solving unstable linear programming problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 15
EP  - 29
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a1/
LA  - ru
ID  - VYURV_2016_5_2_a1
ER  - 
%0 Journal Article
%A I. M. Sokolinskaya
%A L. B. Sokolinsky
%T Implementation of parallel pursuit algorithm for solving unstable linear programming problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 15-29
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a1/
%G ru
%F VYURV_2016_5_2_a1
I. M. Sokolinskaya; L. B. Sokolinsky. Implementation of parallel pursuit algorithm for solving unstable linear programming problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 2, pp. 15-29. http://geodesic.mathdoc.fr/item/VYURV_2016_5_2_a1/

[1] I.I. Eremin, Vl.D. Mazurov, Unstable Processes of Mathematical Programming, Nauka, Moscow, 1979, 291 pp.

[2] S. Agmon, “The Relaxation Method for Linear Inequalities”, Canad. J. Math., 6:3 (1954), 382–392

[3] T.S. Motzkin, J.J. Schoenberg, “The Relaxation Method for Linear Inequalities”, Canad. J. Math., 6:3 (1954), 393–404

[4] I.I. Eremin, L.D. Popov, “Fejer’s Mappings in Theory and Practice: Review of the Latest Results”, Proceedings of the Higher Educational Institutions. Mathematics, 2009, no. 1, 44–65

[5] M.M. Dyshaev, I.M. Sokolinskaya, “Representation of Trading Signals Based Kaufman Adaptive Moving Average as a System of Linear Inequalities”, Bulletin of South Ural State University. Series: Computational Mathematics and Software Engineering, 2:4 (2013), 103–108

[6] I.V. Ananchenko, A.A. Musaev, “rading Robots and Management in Chaotic Environments: an Overview and Critical Analysis”, SPIIRAS Proceedings, 2014, no. 3(34), 178–203

[7] I.M. Sokolinskaya, L.B. Sokolinskii, “Parallel Algorithm for Solving Linear Programming Problem Under Conditions of Incomplete Data”, Automation and Remote Control, 71:7 (2010), 1452–1460

[8] T.V. Rechkalov, M.L. Zymbler, “Accelerating Medoids-based Clustering with the Intel Many Integrated Core Architecture”, Proceedings of the 9th International Conference on Application of Information and Communication Technologies (AICT'2015) (October 14–16, 2015, Rostov-on-Don, Russia), IEEE, 2015, 413–417

[9] M.L. Zymbler, “Best-match Time Series Subsequence Search on the Intel Many Integrated Core Architecture”, Proceedings of the 19th East-European Conference on Advances in Databases and Information Systems, ADBIS 2015 (Poitiers, France, September 8–11, 2015), Lecture Notes in Computer Science, 9282, Springer, 2015, 275–286

[10] I.M. Sokolinskaya, L.B. Sokolinskiy, “Algorithm for Solving Unstable Linear Programming Problems for Cluster Computing Systems with Manycore Accelerators”, Parallel Computational Technologies (PCT'2015): Proceedings of the International Scientific Conference. Chelyabinsk, Publishing of the South Ural State University, 2015, 477–481

[11] I. Sokolinskaya, L. Sokolinskiy, “Solving Unstable Linear Programming Problems of High Dimension on Cluster Computing Systems”, 1st Russian Conference on Supercomputing Days 2015, RuSCDays 2015 (Moscow, Russian Federation, 28–29 September 2015), CEUR Workshop Proceedings, 1482, 2015, 420–427

[12] I.I. Eremin, Fejer’s Methods for Problems of Convex and Linear Optimization, Publishing of the South Ural State University, Chelyabinsk, 2009, 200 pp.

[13] A.V. Ershova, I.M. Sokolinskaya, “About Convergence of Scalable Algorithm of Constructing Pseudo-Projection on Convex Closed Set”, Bulletin of South Ural State University. Series: Mathematical Simulation and Programming, 2011, no. 10, 12–21