On solution of solid state physics inverse problem by means of A. N. Tikhonov's regularization method and estimation of the error of this method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 35-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers one-dimensional Fredholm integral equation of the first kind with a closed core. It is known that the equation has a unique solution in the space $W^1_{2}[a, b]$. We use Tikhonov's regularization method of the first-order to solve the equation. The method allows us to reduce the equation to a variational problem. Solving the variational problem we get integro-differential equation of second order. We apply the finite-difference approximation method to reduce the original problem to a system of algebraic equations. regularization parameter. We obtain an error estimate for the proposed algorithm taking into account the error of finite-difference approximation and state the relation between the approximation with the error and the regularization parameter and the error of the initial data. This algorithm is used to solve the problem of determining the phonon spectrum of the crystal given its heat capacity.
Keywords: regularization, the method of residuals, the modulus of continuity, ill-posed problem.
Mots-clés : error estimation
@article{VYURV_2016_5_1_a3,
     author = {V. P. Tanana and A. I. Sidikova},
     title = {On solution of solid state physics inverse problem by means of {A.~N.} {Tikhonov's} regularization method and estimation of the error of this method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {35--46},
     year = {2016},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a3/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. I. Sidikova
TI  - On solution of solid state physics inverse problem by means of A. N. Tikhonov's regularization method and estimation of the error of this method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 35
EP  - 46
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a3/
LA  - ru
ID  - VYURV_2016_5_1_a3
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. I. Sidikova
%T On solution of solid state physics inverse problem by means of A. N. Tikhonov's regularization method and estimation of the error of this method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 35-46
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a3/
%G ru
%F VYURV_2016_5_1_a3
V. P. Tanana; A. I. Sidikova. On solution of solid state physics inverse problem by means of A. N. Tikhonov's regularization method and estimation of the error of this method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a3/

[1] A.N. Tihonov, “Solution of Incorrectly Formulated Problems and the Regularized Method”, Doklady Mathematics, 151:3 (1963), 501–504

[2] I.M. Lifshis, “On Determining the Energy Spectrum of the Bose System in Her Heat”, Journal of Experimental and Theoretical Physics, 26:5 (1959), 551–556

[3] V.I. Iveronova, A.N. Tihonov, P.N. Zaikin, A.P. Zvyagina, “The Determination of the Phonon Spectrum of Crystals on the Heat Capacity”, Physics of the Solid State, 8:12 (1966), 3459–3462

[4] V.P. Tanana, A.I. Sidikova, “An Error Estimate of a Regularizing Algorithm Bazed of the Generalized Residual Principle when Solving Integral Equations”, Numerical Methods and Programming, 16:1 (2015), 1–9

[5] V.A. Morozov, “On the Regularization of Ill-Posed Problems and the Choice of the Regularization Parameter”, USSR Computational Mathematics and Mathematical Physics, 6:1 (1966), 170–175

[6] V.K. Ivanov, T.I. Korolyuk, “Error Estimates for Solutions of Incorrectly Posed Linear Problems”, USSR Computational Mathematics and Mathematical Physics, 9:1 (1969), 30–41

[7] V.P. Tanana, V.V. Boyarshinov, On the Uniqueness of the Solution of the Inverse Problem of Determining the Phonon Spectra of the Crystal, Deposited in VINITI, no. 892–V87, 1987

[8] V.P. Tanana, A.A. Erygina, “An Error Estimate for the Regularization Method of A.N. Tikhonov for Solving an Inverse Problem of Solid State Physics”, Journal of Applied and Industrial Mathematics, 17:2 (2014), 125–136