On state estimation for multi-agent motion: discrete-time systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 13-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The reachability problem for linear discrete-time control systems which describe multi-agent motion is considered. Namely, we consider a finite set of subsystems with controls to be chosen under the condition that the trajectories of the subsystems are pairwise not very close to and not very far away from each other. Properties of reachable sets of such systems are described. Some algorithms for constructing external polyhedral (parallelepiped-valued) estimates for reachable sets are proposed.
Keywords: reachable sets, discrete-time systems, polyhedral estimates.
Mots-clés : multi-agent motion
@article{VYURV_2016_5_1_a1,
     author = {E. K. Kostousova},
     title = {On state estimation for multi-agent motion: discrete-time systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {13--23},
     year = {2016},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a1/}
}
TY  - JOUR
AU  - E. K. Kostousova
TI  - On state estimation for multi-agent motion: discrete-time systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 13
EP  - 23
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a1/
LA  - ru
ID  - VYURV_2016_5_1_a1
ER  - 
%0 Journal Article
%A E. K. Kostousova
%T On state estimation for multi-agent motion: discrete-time systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 13-23
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a1/
%G ru
%F VYURV_2016_5_1_a1
E. K. Kostousova. On state estimation for multi-agent motion: discrete-time systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a1/

[1] M.I. Gusev, “External Estimates of the Reachability Sets of Nonlinear Controlled Systems”, Autom. Remote Control, 73:3 (2012), 450–461 | DOI

[2] E.K. Kostousova, “Parallel Computations for Estimating Attainability Domains and Informational Sets of Linear Systems”, Algorithms and Software for Parallel Computations, 1999, no. 3, 107–126, UrO RAN, Ekaterinburg

[3] A.B. Kurzhanski, “The Problem of Control for Multi-Agent Motion”, Doclady Mathematics, 79:3 (2009), 314–318 | DOI

[4] F.L. Chernousko, Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994, 304 pp.

[5] T.F. Filippova, “Approximation Techniques in Impulsive Control Problems for the Tubes of Solutions of Uncertain Differential Systems”, Springer Proc. Mathematics and Statistics, v. 41, 2013, 385–396 | DOI

[6] E.K. Kostousova, “State Estimation for Dynamic Systems via Parallelotopes: Optimization and Parallel Computations”, Optimiz. Methods Software, 9:14 (1998), 269–306 | DOI

[7] A.B. Kurzhanski, I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997, 321 pp.

[8] A.B. Kurzhanski, P. Varaiya, “On Synthesizing Team Target Controls Under Obstacles and Collision Avoidance”, J. Franklin Inst, 347:1 (1997), 130–145 | DOI

[9] A.B. Kurzhanski, P. Varaiya, Dynamics and Control of Trajectory Tubes: Theory and Computation. (Systems Control: Foundations Applications, Book 85), Birkhäuser Basel, 2014, 445 pp. | DOI

[10] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory”, IEEE Trans. on Automatic Control, 51:3 (2006), 401–420 | DOI

[11] A. Vicino, G. Zappa, “Sequential Approximation of Feasible Parameter Sets for Identification with Set Membership Uncertainty”, IEEE Trans. on Automatic Control, 41:6 (1996), 774–785 | DOI