Asimptotics of magnetoresistance
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic formula expressing the electric the resistance of the isotropic crystal semiconductor in a magnetic field and connected through small contacts was found. For modeling of the electric potential the solution of boundary value problems for elliptic equations with oblique derivative on the boundary was used.
Keywords: magnetoresistance, electric potential, electrical resistance, magnetic field, asymptotic expansion, boundary value problem.
Mots-clés : Laplace equation, oblique derivative
@article{VYURV_2016_5_1_a0,
     author = {A. A. Ershov and J. A. Krutova},
     title = {Asimptotics of magnetoresistance},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--12},
     year = {2016},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a0/}
}
TY  - JOUR
AU  - A. A. Ershov
AU  - J. A. Krutova
TI  - Asimptotics of magnetoresistance
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2016
SP  - 5
EP  - 12
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a0/
LA  - ru
ID  - VYURV_2016_5_1_a0
ER  - 
%0 Journal Article
%A A. A. Ershov
%A J. A. Krutova
%T Asimptotics of magnetoresistance
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2016
%P 5-12
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a0/
%G ru
%F VYURV_2016_5_1_a0
A. A. Ershov; J. A. Krutova. Asimptotics of magnetoresistance. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 5 (2016) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURV_2016_5_1_a0/

[1] P.S. Kireev, Physics of Semiconductors, 2nd Edition, Revised, Higher School, Moscow, 1975, 584 pp.

[2] N.N. Polyakov, “The Measurement of Hall Coefficient of Conductivity of Anisotropic Conductors”, Factory Laboratory, 1989, no. 3, 20–22

[3] A.Yu. Grishentsev, “Simulation of Current Density Distribution in Complex Inhomogeneous Conductor. Part 1”, Scientific and Technical Bulletin of SPBSU ITMO, 2006, no. 29, 87–94

[4] A.A. Ershov, “Asymptotics of the Solution to the Neumann Problem with a Delta-functionlike Boundary Function”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 479–-485 | DOI

[5] A.A. Ershov, “On Measurement of Electrical Conductivity”, Computational Mathematics and Mathematical Physics, 53:6 (2013), 823–-826 | DOI

[6] A.A. Ershov, “Asymptotics of the Solution of Laplace's Equation with Mixed Boundary Conditions”, Computational Mathematics and Mathematical Physics, 51:7 (2011), 994–-1010 | DOI

[7] R. Holm, Electric Contacts Handbook, Springer-Verlag Berlin Heidelberg GmbH, Berlin, 1958, 522 pp.

[8] O.M. Pavleyno, V.A. Pavlov, M.A. Pavleyno, “Verification of the Boundaries of the Applicabillity of the Holm Approximation for the Calculation of the Resistance of Electric Contacts”, Surface Engineering and Applied Electrochemistry, 46:5 (2010), 440–-446

[9] V.G. Zatovskiy, N.V. Minakov, “Experimental Simulation of the Resistance of the Tightening”, Electrical Contacts and Electrodes, 2010, no. 10, 132–139

[10] V.V. Filippov, N.N. Polyakov, “The Potential Distribution in the Anisotropic Conductive Crystals and Films in the Measurement of Conductivity and Hall Coefficient”, News of Higher Educational Institutions of Chernozem Region, 2011, no. 2(24), 6–10

[11] A.M. Il'in, A.R. Danilin, Asymptotic Methods in Analysis, Fizmatlit, M., 2009, 222 pp.

[12] M.V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, M., 1987, 544 pp.